The Standard ASW Method

  • Volker Eyert
Part of the Lecture Notes in Physics book series (LNP, volume 849)

Abstract

The survey of the various augmented spherical wave (ASW) method starts with an outline of the standard scheme. Within the framework of density functional theory and the (semi-)local approximations it allows for both fast and conceptually simple calculations of the ground state properties of solids. On an introductory level this chapter follows the natural sequence of a self-consistency cycle as usually performed in first principles calculations and explains the main steps comprising the calculation of the basis functions, the electron density, and the effective potential.

Keywords

Core State Envelope Function Hankel Function Interstitial Region Atomic Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972) MATHGoogle Scholar
  2. 2.
    H. Akai, P.H. Dederichs, J. Phys. C 18, 2455 (1985) ADSCrossRefGoogle Scholar
  3. 3.
    O.K. Andersen, Comments on the KKR-wavefunction; Extension of the spherical wave expansion beyond the muffin-tins, in Computational Methods in Band Theory, ed. by P.M. Marcus, J.F. Janak, A.R. Williams (Plenum Press, New York, 1971), pp. 178–182 CrossRefGoogle Scholar
  4. 4.
    O.K. Andersen, Solid State Commun. 13, 133 (1973) ADSCrossRefGoogle Scholar
  5. 5.
    O.K. Andersen, Phys. Rev. B 12, 3060 (1975) ADSCrossRefGoogle Scholar
  6. 6.
    O.K. Andersen, Linear methods in band theory, in The Electronic Structure of Complex Systems, ed. by P. Phariseau, W. Temmerman (Plenum Press, New York, 1984), pp. 11–66 CrossRefGoogle Scholar
  7. 7.
    O.K. Andersen, Muffin-tin orbital theory, in Methods on Electronic Structure Calculations. Lecture Notes from the ICTP Workshop (International Center for Theoretical Physics, Trieste, 1992) Google Scholar
  8. 8.
    O.K. Andersen, O. Jepsen, D. Glötzel, Canonical description of the band structures of metals, in Highlights of Condensed-Matter Theory, ed. by F. Bassani, F. Fumi, M.P. Tosi. Proceedings of the International School of Physics “Enrico Fermi”, Course LXXXIX (North-Holland, Amsterdam, 1985), pp. 59–176 Google Scholar
  9. 9.
    D.G. Anderson, J. Assoc. Comput. Mach. 12, 547 (1965) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    U. von Barth, Density functional theory for solids, in The Electronic Structure of Complex Systems, ed. by P. Phariseau, W. Temmerman (Plenum Press, New York, 1984), pp. 67–140 CrossRefGoogle Scholar
  11. 11.
    U. von Barth, An overview of density functional theory, in Many-Body Phenomena at Surfaces, ed. by D. Langreth, H. Suhl (Academic Press, Orlando, 1984), pp. 3–50 Google Scholar
  12. 12.
    U. von Barth, L. Hedin, J. Phys. C 5, 1629 (1972) ADSCrossRefGoogle Scholar
  13. 13.
    P. Bendt, A. Zunger, Phys. Rev. B 26, 3114 (1982) ADSCrossRefGoogle Scholar
  14. 14.
    S. Blügel, First principles calculations of the electronic structure of magnetic overlayers on transition metal surfaces, PhD thesis, Rheinisch-Westfälische Technische Hochschule Aachen, 1987 Google Scholar
  15. 15.
    C.G. Broyden, Math. Comput. 19, 577 (1965) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    C.G. Broyden, Math. Comput. 21, 368 (1966) MathSciNetGoogle Scholar
  17. 17.
    P.H. Dederichs, R. Zeller, Phys. Rev. B 28, 5462 (1983) ADSCrossRefGoogle Scholar
  18. 18.
    J.E. Dennis Jr., J.J. Moré, SIAM Review 19, 46 (1977) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990) MATHCrossRefGoogle Scholar
  20. 20.
    E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    H. Eschrig, The Fundamentals of Density Functional Theory (Edition am Gutenbergplatz, Leipzig, 2003) MATHGoogle Scholar
  22. 22.
    P.P. Ewald, Ann. Phys. 64, 253 (1921) MATHCrossRefGoogle Scholar
  23. 23.
    V. Eyert, Entwicklung und Implementation eines Full-Potential-ASW-Verfahrens, PhD thesis, Technische Hochschule Darmstadt, 1991 Google Scholar
  24. 24.
    V. Eyert, J. Comput. Phys. 124, 271 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    V. Eyert, Electronic structure calculations for crystalline materials, in Density Functional Methods: Applications in Chemistry and Materials Science, ed. by M. Springborg (Wiley, Chichester, 1997), pp. 233–304 Google Scholar
  26. 26.
    V. Eyert, Octahedral deformations and metal-insulator transition in transition metal chalcogenides, Habilitation thesis, University of Augsburg, 1998 Google Scholar
  27. 27.
    V. Eyert, Int. J. Quantum Chem. 77, 1007 (2000) CrossRefGoogle Scholar
  28. 28.
    V. Eyert, Electronic Structure of Crystalline Materials, 2nd edn. (University of Augsburg, Augsburg, 2005) Google Scholar
  29. 29.
    L.G. Ferreira, J. Comput. Phys. 36, 198 (1980) ADSMATHCrossRefGoogle Scholar
  30. 30.
    E.R. Fuller, E.R. Naimon, Phys. Rev. B 6, 3609 (1972) ADSCrossRefGoogle Scholar
  31. 31.
    C.D. Gelatt Jr., H. Ehrenreich, R.E. Watson, Phys. Rev. B 15, 1613 (1977) ADSCrossRefGoogle Scholar
  32. 32.
    D. Hackenbracht, Berechnete elektronische und thermomechanische Eigenschaften einiger La-In und Al-Ni-Verbindungen, Diploma thesis, Ruhr-Universität Bochum, 1979 Google Scholar
  33. 33.
    F.S. Ham, B. Segall, Phys. Rev. 124, 1786 (1961) MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    L. Hedin, B.I. Lundqvist, J. Phys. C 4, 2064 (1971) ADSCrossRefGoogle Scholar
  35. 35.
    L. Hodges, R.E. Watson, H. Ehrenreich, Phys. Rev. B 5, 3953 (1972) ADSCrossRefGoogle Scholar
  36. 36.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975) MATHGoogle Scholar
  38. 38.
    D.D. Johnson, Phys. Rev. B 38, 12807 (1988) ADSCrossRefGoogle Scholar
  39. 39.
    G.P. Kerker, Phys. Rev. B 23, 3082 (1981) ADSCrossRefGoogle Scholar
  40. 40.
    W. Kohn, N. Rostoker, Phys. Rev. 94, 1111 (1954) ADSMATHCrossRefGoogle Scholar
  41. 41.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965) MathSciNetADSGoogle Scholar
  42. 42.
    W. Kohn, P. Vashishta, General density functional theory, in Theory of the Inhomogeneous Electron Gas, ed. by S. Lundqvist, N.H. March (Plenum Press, New York, 1983), pp. 79–147 Google Scholar
  43. 43.
    J. Korringa, Physica 13, 392 (1947) MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  45. 45.
    J. Kübler, V. Eyert, Electronic structure calculations, in Electronic and Magnetic Properties of Metals and Ceramics, ed. by K.H.J. Buschow (VCH Verlagsgesellschaft, Weinheim, 1992), pp. 1–145; vol. 3A of Materials Science and Technology, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (VCH Verlagsgesellschaft, Weinheim, 1991–1996) Google Scholar
  46. 46.
    J. Kübler, K.-H. Höck, J. Sticht, A.R. Williams, J. Phys. F 18, 469 (1988) ADSCrossRefGoogle Scholar
  47. 47.
    J. Kübler, K.-H. Höck, J. Sticht, A.R. Williams, J. Appl. Phys. 63, 3482 (1988) ADSCrossRefGoogle Scholar
  48. 48.
    M. Levy, J.P. Perdew, Phys. Rev. B 48, 11638 (1993) ADSCrossRefGoogle Scholar
  49. 49.
    J.M. MacLaren, D.P. Clougherty, M.E. McHenry, M.M. Donovan, Comput. Phys. Commun. 66, 383 (1991) ADSMATHCrossRefGoogle Scholar
  50. 50.
    P.M. Marcus, J.F. Janak, A.R. Williams, Computational Methods in Band Theory (Plenum Press, New York, 1971) MATHCrossRefGoogle Scholar
  51. 51.
    S.F. Matar, Progr. Solid State Chem. 31, 239 (2003) CrossRefGoogle Scholar
  52. 52.
    A. Messiah, Quantum Mechanics, vol. 1 (North Holland, Amsterdam, 1976) Google Scholar
  53. 53.
    M.S. Methfessel, Zur Berechnung der Lösungswärme von Metallhydriden, Diploma thesis, Ruhr-Universität Bochum, 1980 Google Scholar
  54. 54.
    V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated Electronic Properties of Metals (Pergamon Press, New York, 1978) Google Scholar
  55. 55.
    W. Nolting, Grundkurs: Theoretische Physik, vol. 5, part 1: Quantenmechanik – Grundlagen (Springer, Berlin, 2004) Google Scholar
  56. 56.
    R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989) Google Scholar
  57. 57.
    J.P. Perdew, Unified theory of exchange and correlation beyond the local density approximation, in Electronic Structure of Solids’91, ed. by P. Ziesche, H. Eschrig (Akademie Verlag, Berlin, 1991), pp. 11–20 Google Scholar
  58. 58.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  59. 59.
    J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996) ADSCrossRefGoogle Scholar
  60. 60.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992) ADSCrossRefGoogle Scholar
  61. 61.
    J.P. Perdew, Y. Wang, Phys. Rev. B 33, 8800 (1986) ADSCrossRefGoogle Scholar
  62. 62.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981) ADSCrossRefGoogle Scholar
  63. 63.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes—The Art of Scientific Computing (Cambridge University Press, Cambridge, 1989) Google Scholar
  64. 64.
    P. Pulay, Chem. Phys. Lett. 73, 393 (1980) ADSCrossRefGoogle Scholar
  65. 65.
    L.M. Sandratskii, Adv. Phys. 47, 91 (1998) ADSCrossRefGoogle Scholar
  66. 66.
    B. Segall, F.S. Ham, in Methods in Computational Physics, ed. by B. Alder, S. Fernbach, M. Rotenberg (Academic Press, New York, 1968), pp. 251–293 Google Scholar
  67. 67.
    C.A. Sholl, Proc. Phys. Soc. 92, 434 (1967) ADSCrossRefGoogle Scholar
  68. 68.
    D. Singh, H. Krakauer, C.S. Wang, Phys. Rev. B 34, 8391 (1986) ADSCrossRefGoogle Scholar
  69. 69.
    H.L. Skriver, The LMTO Method (Springer, Berlin, 1984) CrossRefGoogle Scholar
  70. 70.
    J.C. Slater, Phys. Rev. 51, 846 (1937) ADSCrossRefGoogle Scholar
  71. 71.
    G.P. Srivastava, J. Phys. A 17, L317 (1984) ADSCrossRefGoogle Scholar
  72. 72.
    J. Sticht, K.-H. Höck, J. Kübler, J. Phys.: Cond. Matt. 1, 8155 (1989) ADSCrossRefGoogle Scholar
  73. 73.
    J. Sticht, Bandstrukturrechnung für Schwere-Fermionen-Systeme, PhD thesis, Technische Hochschule Darmstadt, 1989 Google Scholar
  74. 74.
    D. Vanderbilt, S.G. Louie, Phys. Rev. B 30, 6118 (1984) ADSCrossRefGoogle Scholar
  75. 75.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980) ADSCrossRefGoogle Scholar
  76. 76.
    R.E. Watson, H. Ehrenreich, L. Hodges, Phys. Rev. Lett. 15, 829 (1970) ADSCrossRefGoogle Scholar
  77. 77.
    A.R. Williams, U. von Barth, Applications of density functional theory to atoms, molecules and solids, in Theory of the Inhomogeneous Electron Gas, ed. by S. Lundqvist, N.H. March (Plenum Press, New York, 1983), pp. 189–307 Google Scholar
  78. 78.
    A.R. Williams, J. Kübler, C.D. Gelatt Jr., Phys. Rev. B 19, 6094 (1979) ADSCrossRefGoogle Scholar
  79. 79.
    Y. Zhang, W. Yang, Phys. Rev. Lett. 80, 890 (1998) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Volker Eyert
    • 1
  1. 1.Materials Design SARLMontrougeFrance

Personalised recommendations