Advertisement

Stream-of-Variation Based Quality Assurance for Multi-station Machining Processes – Modeling and Planning

  • J. V. Abellan-Nebot
  • J. Liu
  • F. Romero Subiron

Abstract

In the effort of quality assured product design and implementation, a reliable 3D manufacturing variation propagation model for multi-station machining processes (MMPs) is a key enabler to evaluate the output of geometric and dimensional product quality. Recently, the extension of the stream-of-variation (SoV) methodology provides quality engineers with a tool to model the propagation of machining-induced variations, together with fixture- and datum-induced variations, along multiple stations in MMPs. In this chapter, we present a generic framework of building the extended SoV model for MMPs. Its application in manufacturing process planning is introduced and demonstrated in detail through a 3D case study.

Keywords

Flank Wear Capability Index Fixture Layout Fixture Locator Homogeneous Transformation Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou, S., Huang, Q., Shi, J.: State Space Modeling of Dimensional Variation Propagation in Multistage Machining Process Using Differential Motion Vectors. IEEE Transactions on Robotics and Automation 19, 296–309 (2003)CrossRefGoogle Scholar
  2. 2.
    Ogata, K.: Modern Control Engineering. Prentice Hall, New Jersey (2001)Google Scholar
  3. 3.
    Ding, Y., Shi, J., Ceglarek, D.: Diagnosability analysis of multi-station manufacturing processes. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme 124, 1–13 (2002)CrossRefGoogle Scholar
  4. 4.
    Zhou, S., Chen, Y., Ding, Y., Shi, J.: Diagnosability Study of Multistage Manufacturing Processes Based on Linear Mixed-Effects Models. Technometrics 45, 312–325 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Zhou, S., Chen, Y., Shi, J.: Statistical estimation and testing for variation root-cause identification of multistage manufacturing processes. IEEE Transactions on Automation Science and Engineering 1, 73–83 (2004)CrossRefGoogle Scholar
  6. 6.
    Li, Z.G., Zhou, S., Ding, Y.: Pattern matching for variation-source identification in manufacturing processes in the presence of unstructured noise. IIE Transactions 39, 251–263 (2007)CrossRefGoogle Scholar
  7. 7.
    Djurdjanovic, D., Ni, J.: Dimensional errors of fixtures, locating and measurement datum features in the stream of variation modeling in machining. Journal of Manufacturing Science and Engineering-Transactions of the Asme 125, 716–730 (2003)CrossRefGoogle Scholar
  8. 8.
    Djurdjanovic, D., Zhu, J.: Stream of Variation Based Error Compensation Strategy in Multi-Stage Manufacturing Processes. In: ASME Conference Proceedings, vol. 42231, pp. 1223–1230 (2005)Google Scholar
  9. 9.
    Djurdjanovic, D., Ni, J.: Online stochastic control of dimensional quality in multistation manufacturing systems. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture 221, 865–880 (2007)CrossRefGoogle Scholar
  10. 10.
    Jiao, Y., Djurdjanovic, D.: Joint allocation of measurement points and controllable tooling machines in multistage manufacturing processes. IIE Transactions 42, 703–720 (2010)CrossRefGoogle Scholar
  11. 11.
    Zhong, J., Liu, J., Shi, J.: Predictive Control Considering Model Uncertainty for Variation Reduction in Multistage Assembly Processes. IEEE Transactions on Automation Science and Engineering 7, 724–735 (2010)CrossRefGoogle Scholar
  12. 12.
    Liu, Q., Ding, Y., Chen, Y.: Optimal coordinate sensor placements for estimating mean and variance components of variation sources. IIE Transactions 37, 877–889 (2005)CrossRefGoogle Scholar
  13. 13.
    Liu, J., Shi, J., Hu, J.S.: Quality-assured setup planning based on the stream-of-variation model for multi-stage machining processes. IIE Transactions 41, 323–334 (2009)CrossRefGoogle Scholar
  14. 14.
    Chen, Y., Ding, Y., Jin, J., Ceglarek, D.: Integration of Process-Oriented Tolerancing and Maintenance Planning in Design of Multistation Manufacturing Processes. IEEE Transactions on Automation Science and Engineering 3, 440–453 (2006)CrossRefGoogle Scholar
  15. 15.
    Ding, Y., Jin, J., Ceglarek, D., Shi, J.: Process-oriented tolerancing for multi-station assembly systems. IIE Transactions 37, 493–508 (2005)CrossRefGoogle Scholar
  16. 16.
    Abellan-Nebot, J.V., Liu, J., Romero, F.: Design of multi-station manufacturing processes by integrating the stream-of-variation model and shop-floor data. Journal of Manufacturing Systems 30, 70–82 (2011)CrossRefGoogle Scholar
  17. 17.
    Shi, J.: Stream of Variation Modeling and Analysis for Multistage. CRC Press Taylor and Francis Group (2007)Google Scholar
  18. 18.
    Abellan-Nebot, J.V., Liu, J., Romero, F.: State Space Modeling of Variation Propagation in Multi-station Machining Processes Considering Machining-Induced Variations. Journal of Manufacturing Science and Engineering-Transactions of the Asme (in press, 2012)Google Scholar
  19. 19.
    Joshi, P.H.: Jigs and Fixtures Design Manual. McGraw-Hill, New York (2003)Google Scholar
  20. 20.
    Wang, M.Y.: Characterizations of positioning accuracy of deterministic localization of fixtures. In: IEEE International Conference on Robotics and Automation, pp. 2894–2899 (2002)Google Scholar
  21. 21.
    Choi, J.P., Lee, S.J., Kwon, H.D.: Roundness Error Prediction with a Volumetric Error Model Including Spindle Error Motions of a Machine Tool. International Journal of Advanced Manufacturing Technology 21, 923–928 (2003)CrossRefGoogle Scholar
  22. 22.
    Lei, W.T., Hsu, Y.Y.: Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part I: design and modeling, International Journal of Machine Tools and Manufacture 42, 1153–1162 (2002)Google Scholar
  23. 23.
    Chen, J.S., Yuan, J., Ni, J.: Thermal Error Modelling for Real-Time Error Compensation. International Journal of Advanced Manufacturing Technology 12, 266–275 (1996)CrossRefGoogle Scholar
  24. 24.
    Chen, G., Yuan, J., Ni, J.: A displacement measurement approach for machine geometric error assessment. International Journal of Machine Tools and Manufacture 41, 149–161 (2001)CrossRefGoogle Scholar
  25. 25.
    Yang, S.H., Kim, K.H., Park, Y.K., Lee, S.G.: Error analysis and compensation for the volumetric errors of a vertical machining centre using a hemispherical helix ball bar test. International Journal of Advanced Manufacturing Technology 23, 495–500 (2004)CrossRefGoogle Scholar
  26. 26.
    Tseng, P.C.: A real-time thermal inaccuracy compensation method on a machining centre. International Journal of Advanced Manufacturing Technology 13, 182–190 (1997)CrossRefGoogle Scholar
  27. 27.
    Haitao, Z., Jianguo, Y., Jinhua, S.: Simulation of thermal behavior of a CNC machine tool spindle. International Journal of Machine Tools and Manufacture 47, 1003–1010 (2007)CrossRefGoogle Scholar
  28. 28.
    Kim, G.M., Kim, B.H., Chu, C.N.: Estimation of cutter deflection and form error in ball-end milling processes. International Journal of Machine Tools and Manufacture 43, 917–924 (2003)CrossRefGoogle Scholar
  29. 29.
    López de Lacalle, L.N., Lamikiz, A., Sanchez, J.A., Salgado, M.A.: Effects of tool deflection in the high-speed milling of inclined surfaces. International Journal of Advanced Manufacturing Technology 24, 621–631 (2004)CrossRefGoogle Scholar
  30. 30.
    Dow, T.A., Miller, E.L., Garrard, K.: Tool force and deflection compensation for small milling tools. Precision Engineering 28, 31–45 (2004)CrossRefGoogle Scholar
  31. 31.
    Gere, J.M., Goodno, B.J.: Mechanics of Materials, 7th edn. Nelson Engineering (2008)Google Scholar
  32. 32.
    ISO 8688-1:1989, Tool-life testing in milling – Part 1: face millingGoogle Scholar
  33. 33.
    Taam, W., Subbaiah, P., Liddy, J.W.: A note on multivariate capability indices. Journal of Applied Statistics 20, 339–351 (1993)CrossRefGoogle Scholar
  34. 34.
    Chen, H.F.: A Multivariate Process Capability Index Over A Rectangular Solid Tolerance Zone. Statistica Sinica 4, 749–758 (1994)zbMATHGoogle Scholar
  35. 35.
    Wang, F.K., Chen, J.C.: Capability indices using principle components analysis. Quality Engineering 11, 21–27 (1998)CrossRefzbMATHGoogle Scholar
  36. 36.
    Wang, F.K., Du, T.C.T.: Using principle component analysis in process performance for multivariate data. Omega 28, 185–194 (2000)CrossRefGoogle Scholar
  37. 37.
    Pearn, W.L., Kotz, S.: Encyclopedia And Handbook of Process Capability Indices: A Comprehensive Exposition of Quality Control Measures. World Scientific Publishing Company (2006)Google Scholar
  38. 38.
    Zhang, M., Djurdjanovic, D., Ni, J.: Diagnosibility and sensitivity analysis for multi-station machining processes. International Journal of Machine Tools and Manufacture 47, 646–657 (2007)CrossRefGoogle Scholar
  39. 39.
    Okafor, A.C., Ertekin, Y.M.: Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. International Journal of Machine Tools and Manufacture 40, 1199–1213 (2000)CrossRefGoogle Scholar
  40. 40.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot modeling and control. John Wiley & Sons, Inc., New York (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. V. Abellan-Nebot
    • 1
  • J. Liu
    • 2
  • F. Romero Subiron
    • 1
  1. 1.Department of Industrial Systems Engineering and DesignUniversitat Jaume ICastellóSpain
  2. 2.Department of Systems and Industrial EngineeringThe University of ArizonaTucsonUSA

Personalised recommendations