Skip to main content

A Clustering Approach Using Weighted Similarity Majority Margins

  • Conference paper
Advanced Data Mining and Applications (ADMA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7120))

Included in the following conference series:

Abstract

We propose a meta-heuristic algorithm for clustering objects that are described on multiple incommensurable attributes defined on different scale types. We make use of a bipolar-valued dual similarity-dissimilarity relation and perform the clustering process by first finding a set of cluster cores and then building a final partition by adding the objects left out to a core in a way which best fits the initial bipolar-valued similarity relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Times Higher Education World University Rankings (2010-2011)

    Google Scholar 

  2. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data (2005)

    Google Scholar 

  3. Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: Optics: ordering points to identify the clustering structure. In: International Conference on Management of Data, pp. 49–60 (1999)

    Google Scholar 

  4. Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments of sums of random variables. Probability and Mathematical Statistics 30, 185–205 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bisdorff, R.: Logical foundation of fuzzy preferential systems with application to the electre decision aid methods. Computers & Operations Research 27, 673–687 (2000)

    Article  MATH  Google Scholar 

  6. Bisdorff, R.: Electre-like clustering from a pairwise fuzzy proximity index. European Journal of Operational Research 138(2), 320–331 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bisdorff, R.: On clustering the criteria in an outranking based decision aid approach. In: Modelling, Computation and Optimization in Information Systems and Management Sciences, pp. 409–418. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)

    Article  MATH  Google Scholar 

  9. Cheeseman, P., Stutz, J.: Bayesian Classification (AutoClass): Theory and Results, ch. 6, pp. 62–83. AAAI Press, MIT Press (1996)

    Google Scholar 

  10. Du, N., Wu, B., Pei, X., Wang, B., Xu, L.: Community detection in large-scale social networks. In: WebKDD/SNA-KDD 2007: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 16–25. ACM (2007)

    Google Scholar 

  11. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  12. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  13. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. In: Haas, L., Drew, P., Tiwary, A., Franklin, M. (eds.) SIGMOD 1998: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 73–84. ACM Press (1998)

    Google Scholar 

  14. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise de Sciences Naturelles 44, 223–370 (1908)

    Google Scholar 

  15. Jain, A., Dubes, R.: Algorithms for clustering data. Prentice-Hall, Inc. (1988)

    Google Scholar 

  16. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Survey 31(3), 264–323 (1999)

    Article  Google Scholar 

  17. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data An Introduction to Cluster Analysis. Wiley Interscience (1990)

    Google Scholar 

  18. Koch, I.: Enumerating all connected maximal common subgraphs in two graphs. Theoretical Computer Science 250(1-2), 1–30 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kohonen, T.: Self-organising maps. Information Sciences (1995)

    Google Scholar 

  20. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (1967)

    Google Scholar 

  21. McLachlan, G., Krishnan, T.: The EM algorithm and extensions. Wiley Series in Probability and Statistics, 2nd edn. Wiley (2008)

    Google Scholar 

  22. Meyer, P., Marichal, J.-L., Bisdorff, R.: Disaggregation of bipolar-valued outranking relations. In: An, L.T.H., Bouvry, P., Tao, P.D. (eds.) MCO. CCIS, vol. 14, pp. 204–213. Springer, Heidelberg (2008)

    Google Scholar 

  23. Moon, J., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3(1), 23–28 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mousseau, V.: Elicitation des préférences pour l’aide multicritére á la décision (2003)

    Google Scholar 

  25. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(2) (2004)

    Google Scholar 

  26. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  27. Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wavecluster: A multi-resolution clustering approach for very large spatial databases. In: Proceedings of 24rd International Conference on Very Large Data Bases VLDB 1998, pp. 428–439. Morgan Kaufmann (1998)

    Google Scholar 

  28. Talbi, E.: Metaheuristics - From Design to Implementation. Wiley (2009)

    Google Scholar 

  29. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: SIGMOD 1996: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, pp. 103–114. ACM Press (1996)

    Google Scholar 

  30. Zhou, B., Cheung, D.W., Kao, B.: A fast algorithm for density-based clustering in large database. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 338–349. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bisdorff, R., Meyer, P., Olteanu, AL. (2011). A Clustering Approach Using Weighted Similarity Majority Margins. In: Tang, J., King, I., Chen, L., Wang, J. (eds) Advanced Data Mining and Applications. ADMA 2011. Lecture Notes in Computer Science(), vol 7120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25853-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25853-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25852-7

  • Online ISBN: 978-3-642-25853-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics