Abstract
We propose a meta-heuristic algorithm for clustering objects that are described on multiple incommensurable attributes defined on different scale types. We make use of a bipolar-valued dual similarity-dissimilarity relation and perform the clustering process by first finding a set of cluster cores and then building a final partition by adding the objects left out to a core in a way which best fits the initial bipolar-valued similarity relation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
The Times Higher Education World University Rankings (2010-2011)
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data (2005)
Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: Optics: ordering points to identify the clustering structure. In: International Conference on Management of Data, pp. 49–60 (1999)
Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments of sums of random variables. Probability and Mathematical Statistics 30, 185–205 (2010)
Bisdorff, R.: Logical foundation of fuzzy preferential systems with application to the electre decision aid methods. Computers & Operations Research 27, 673–687 (2000)
Bisdorff, R.: Electre-like clustering from a pairwise fuzzy proximity index. European Journal of Operational Research 138(2), 320–331 (2002)
Bisdorff, R.: On clustering the criteria in an outranking based decision aid approach. In: Modelling, Computation and Optimization in Information Systems and Management Sciences, pp. 409–418. Springer, Heidelberg (2008)
Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)
Cheeseman, P., Stutz, J.: Bayesian Classification (AutoClass): Theory and Results, ch. 6, pp. 62–83. AAAI Press, MIT Press (1996)
Du, N., Wu, B., Pei, X., Wang, B., Xu, L.: Community detection in large-scale social networks. In: WebKDD/SNA-KDD 2007: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 16–25. ACM (2007)
Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010)
Frank, A., Asuncion, A.: UCI machine learning repository (2010)
Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. In: Haas, L., Drew, P., Tiwary, A., Franklin, M. (eds.) SIGMOD 1998: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 73–84. ACM Press (1998)
Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise de Sciences Naturelles 44, 223–370 (1908)
Jain, A., Dubes, R.: Algorithms for clustering data. Prentice-Hall, Inc. (1988)
Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Survey 31(3), 264–323 (1999)
Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data An Introduction to Cluster Analysis. Wiley Interscience (1990)
Koch, I.: Enumerating all connected maximal common subgraphs in two graphs. Theoretical Computer Science 250(1-2), 1–30 (2001)
Kohonen, T.: Self-organising maps. Information Sciences (1995)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (1967)
McLachlan, G., Krishnan, T.: The EM algorithm and extensions. Wiley Series in Probability and Statistics, 2nd edn. Wiley (2008)
Meyer, P., Marichal, J.-L., Bisdorff, R.: Disaggregation of bipolar-valued outranking relations. In: An, L.T.H., Bouvry, P., Tao, P.D. (eds.) MCO. CCIS, vol. 14, pp. 204–213. Springer, Heidelberg (2008)
Moon, J., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3(1), 23–28 (1965)
Mousseau, V.: Elicitation des préférences pour l’aide multicritére á la décision (2003)
Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(2) (2004)
Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)
Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wavecluster: A multi-resolution clustering approach for very large spatial databases. In: Proceedings of 24rd International Conference on Very Large Data Bases VLDB 1998, pp. 428–439. Morgan Kaufmann (1998)
Talbi, E.: Metaheuristics - From Design to Implementation. Wiley (2009)
Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: SIGMOD 1996: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, pp. 103–114. ACM Press (1996)
Zhou, B., Cheung, D.W., Kao, B.: A fast algorithm for density-based clustering in large database. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 338–349. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bisdorff, R., Meyer, P., Olteanu, AL. (2011). A Clustering Approach Using Weighted Similarity Majority Margins. In: Tang, J., King, I., Chen, L., Wang, J. (eds) Advanced Data Mining and Applications. ADMA 2011. Lecture Notes in Computer Science(), vol 7120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25853-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-25853-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25852-7
Online ISBN: 978-3-642-25853-4
eBook Packages: Computer ScienceComputer Science (R0)