Non-destructive Evaluation

Chapter

Abstract

Non-destructive testing (NDT) methods are employed in the technical field as a precautionary to avoid accidence or emergency situations for the human and the environment. A risk situation in the technical field could happen if the load of a component is increasing and the wall thickness due to defect growth is decreasing until a critical defect situation. The result of such scenarios could be catastrophic breakdown of the component with sometimes severe aftermath for the human.

Keywords

Stress Corrosion Crack Defect Depth Integrity Assessment Eddy Current Test Corrode Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ono,K., Dobmann, G.: Non-destructive testing 1. General“2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–5 (2011). 10.1002/14356007.b01_11.pub2Google Scholar
  2. 2.
    Czichos, H., Saito, T., Smith, L.: Springer Handbook of Materials Measurement Methods. Springer, Berlin (2006). ISBN -10: 3-540-20785-6++CrossRefGoogle Scholar
  3. 3.
    Wiech, H., Wessels, J.: Zum Stand der Sichtprüfung im Rahmen der Herstellung und der wiederkehrenden Prüfung von Komponenten, DGZfP-JahrestagungMi.1.B.1 (2009)Google Scholar
  4. 4.
    Pernkopf, F., O’Leary, P.: Image acquisition techniques for automatic visual inspection of metallic surfaces. NDT E Int. 36, 609–617 (2003)CrossRefGoogle Scholar
  5. 5.
    Schneider, K., Schuler, X.: Lifetime management for pumped-storage power plants. In: 16th International Seminar on Hydropower Plants, Vienna, Austria, 24–25 Nov 2010Google Scholar
  6. 6.
    Boller, C.: Ways and options for aircraft structural health management. Smart Mater. Struct. 10, 432–440 (2001)CrossRefGoogle Scholar
  7. 7.
    Thomas, H-M., Casperson, R., Einsatz des Wirbelstromprüfverfahrens zur zerstörungsfreien Bestimmung der Angriffstiefe von Korrosionsschäden an Flugzeug Tragflächenbeplankungen, Mater Corros 46, 473-480 (1995)Google Scholar
  8. 8.
    Casperson, R., Knoche, G., Lappoehn, C., Pohl, R., Thomas, H-M.: Computer aided modelling of point spread functions of eddy current probes for corrosion testing. BAM Report; Subtask of BRITE EURAM II Projekt No. 5879; 15.09.1994Google Scholar
  9. 9.
    Grauvogl, E., Regler, F., Thomas, HM.: A new eddy current inspection system for quantitative corrosion depthmeasurement on AlC wing skins; national assotiation of corrosion engineers NACE. In: 12th International Corrosion Congress, 19–24 Sept, Houston, Texas (1993)Google Scholar
  10. 10.
    Bøving, K.G.: NDE Handbook, Non-destructive Examination Methods. Butterworth, London (1989)Google Scholar
  11. 11.
    Hellier, C.J.: Handbook of Non-destructive Evaluation. McGraw-Hill, New York (2001)Google Scholar
  12. 12.
    Krautkrämer, J., Krautkrämer, H.: Ultrasonic testing of Materials, 4th edn. Springer, Berlin (1990)Google Scholar
  13. 13.
    Rose, J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (1999)Google Scholar
  14. 14.
    Deutsch, V., Platte, M., Vogt, M.: Ultraschallprüfung—Grundlagen und industrielle Anwendung. Springer, Berlin (1997)Google Scholar
  15. 15.
    De zeen Magazine: The foetus project by Jorge Lopes Dos Santos; 16 July 2009Google Scholar
  16. 16.
    Erhard, A., Otremba, F.: Degradation of Material Properties Significant for Lifetime Extension of Nuclear Power Plants. Mater Test 52(01–02), 11–19 (2010)Google Scholar
  17. 17.
    Erhard, A., Schenk, G., Hauser T.H., Völz, U.: New applications using phased array techniques. Nucl. Eng. Des. 206, 325–336 (2001)Google Scholar
  18. 18.
    Brekow, G., Brackrock, D., Boehm, R., Liebel, M.: Quantitative defect sizing on components with different wall thicknesses using UT-SAFT. In: 6th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components (2007)Google Scholar
  19. 19.
    Mahaut, S., Roy, O., Beroni, C., Rotter, B.: Development of phased array techniques to improve characterization of defect located in a component of complex geometry. Ultrasonics 40, 165–169 (2002)CrossRefGoogle Scholar
  20. 20.
    Matthies, K., et al.: Ultraschallprüfung von austenitischen Werkstoffen DVS Media DGZfP, Berlin (2009). ISBN 978-3-87155-988-4Google Scholar
  21. 21.
    Zimmer, A.: Abbildende zerstörungsfreie Prüfverfahren mit elastischen und elektromagnetischen Wellen, Dissertation, Kassel University (2008). ISBN 978-3-89958-416-4 Google Scholar
  22. 22.
    Erhard, A., Tscharntke, D., Montag, H-J., Tessaro, U., Voskamp, R., Schmidbauer, J.: SAFT and TOFD used for defect sizing at steam generator feed water nozzle. In: Proceedings of 4th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components, European Communities, pp. 251–260 (2006). ISBN 92-79-00797-1Google Scholar
  23. 23.
    Silk, M.G., Lidington, B.H.: Defect sizing using an ultrasonic time delay approach. Br. J. NDT 17, 33–36 (1975)Google Scholar
  24. 24.
    Silk, M.G.: Estimates of the probability of detection of flaws in TOFD data with varying levels of noise. INSIGHT 38(1), 31–36 (1996)Google Scholar
  25. 25.
    Matthies, K.: Ultraschallprüfung von austenitischen Werkstoffen; DVS Media GmbH, Düsseldorf 1. Auflage, Berlin (2009)Google Scholar
  26. 26.
    Wüstenberg, H., Rotter, B., Klanke, H.-P., Harbecke, D.: Ultrasonic phased arrays for non-destructive inspection of forgings. Mater. Eval. 51, 669–672 (1993)Google Scholar
  27. 27.
    Wüstenberg, H., Erhard, A., Schenk, G., Montag, H-J.: Anwendung der Ultraschalltomographie an Turbinen und Generatorwellen. Materialprüfung 10, 297-302 (1987)Google Scholar
  28. 28.
    NDT Education Resource Center, Brian Larson, Editor, 2001–2012, The Collaboration for NDT Education, Iowa State University, www.ndt-ed.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und –prüfungBerlinGermany

Personalised recommendations