Acoustic Emission

Chapter

Abstract

This chapter presents the principles and applications of acoustic emission (AE) analysis to detect microscale symptoms and syndromes of faults and failures in technical structures and systems.

Keywords

Acoustic Emission Root Mean Square Acoustic Emission Signal Acoustic Emission Event Acoustic Emission Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    EN 1330-9: Non-destructive testing—Terminology—part 9: Terms used in acoustic emission testingGoogle Scholar
  2. 2.
    EN 13554: Non-destructive testing—Acoustic emission—General principlesGoogle Scholar
  3. 3.
    ASNT.: Acoustic emission testing. In: Miller, R.K., v K Hill E, Moore, P.O. (eds.) ASNT Handbook of Non Destructive Testing, vol. 6, 3rd edn., American Society for Nondestructive Testing (2005)Google Scholar
  4. 4.
    Gorman, M.R.: Plate wave acoustic emission. J. Acoust. Soc. Am. 90(1), 358–364 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gorman, M.R., Ziola, S.M.: Plate waves produced by transverse matrix cracking. Ultrasonics 29, 245–251 (1991)CrossRefGoogle Scholar
  6. 6.
    Gorman, M.R., Prosser, W.H.: AE source orientation by plate wave analysis. J. Acoust. Emission 9, 283–288 (1991)Google Scholar
  7. 7.
    Gorman, M.R.: Modal AE: A new understanding of acoustic emission. Technical Publication DWC 96-002 (1996)Google Scholar
  8. 8.
    Prosser, W.H., Jackson, K.E., Kellas, S., Smith, B.T., McKeon, J., Friedman, A.: Advanced waveform-based acoustic emission detection of matrix cracking in composites. Mater. Eval. 53, 1052–1058 (1995)Google Scholar
  9. 9.
    Prosser, W.H.: Advanced AE techniques in composite materials research. J. Acoust. Emission 14, S1–S11 (1996)Google Scholar
  10. 10.
    Prosser, W.H., Seale, M.D., Smith, B.T.: Time-frequency analysis of the dispersion of Lamb modes. J. Acoust. Soc. Am. 105(5), 2669–2676 (1999)CrossRefGoogle Scholar
  11. 11.
    Ono, K.: Structural integrity evaluation using acoustic emission. J. Acoust. Emission 25, 1–20 (2007)Google Scholar
  12. 12.
    Tensi, H.M.: The Kaiser-effect and its scientific background. J. Acoust. Emission 22, S1–S16 (2004)Google Scholar
  13. 13.
    Hamstad, M.A.: A discussion of the basic understanding of the felicity effect in fiber composites. J. Acoust. Emission 5(2), 95–102 (1986)Google Scholar
  14. 14.
    Hamstad MA (1992) An examination of acoustic emission evaluation criteria for aerospace type fiber/polymer composites. In: Proceedings Fourth International Symposium on Acoustic Emission from Composite Materials, AECM-4, Seattle 1992, American Society for Nondestructive Testing, vol. 1992, Columbia, pp. 436–49Google Scholar
  15. 15.
    Fowler, T.J., Blessing, J.A., Strauser, F.E.: Intensity analysis. In: Proceedings Fourth International Symposium on Acoustic Emission From Composite Materials, AECM-4, Seattle 1992, American Society for Nondestructive Testing, vol. 1992, Columbia, Ohio, pp. 237–246 (1992)Google Scholar
  16. 16.
    Fowler, T.J.: Revisions to the CARP recommended practice for tanks and vessels. In: Proceedings of Fifth International Symposium on Acoustic Emission from Composite Material, AECM-5, Sundsvall 1995, American Society for Nondestructive Testing, Columbia, Ohio, pp. 263–271 (1995)Google Scholar
  17. 17.
    EN 14584: Non-destructive testing—Acoustic emission—Examination of metallic pressure equipment during proof testing—Planar location of AE sourcesGoogle Scholar
  18. 18.
    EN 15495: Non-destructive testing—Acoustic emission—Examination of metallic pressure equipment during proof testing—Zone location of AE sourcesGoogle Scholar
  19. 19.
    EN 15856: Non-destructive testing—Acoustic emission—General principles of AE testing for the detection of corrosion within metallic surrounding filled with liquidGoogle Scholar
  20. 20.
    EN 15857: Non-destructive testing—Acoustic emission—Testing of fibre-reinforced polymers—Specific methodology and general evaluation criteriaGoogle Scholar
  21. 21.
    Committee on Acoustic Emission from Reinforced Plastics (CARP): A division of the technical council of the American Society for Nondestructive Testing (1999, Draft I): Recommended practice for acoustic emission evaluation of fiber reinforced plastic (FRP) tanks and pressure vesselsGoogle Scholar
  22. 22.
    ASTM E2076: Standard test method for examination of fiberglass reinforced plastic fan blades using acoustic emissionGoogle Scholar
  23. 23.
    ASTM E1067: Standard practice for acoustic emission examination of fiberglass reinforced plastic resin (FRP) tanks/vesslesGoogle Scholar
  24. 24.
    ASTM Subcommittee E07.04, Work item #12759: Standard guide for acoustic emission examination of plate-like and flat panel composite structures used in aerospace applications (2007)Google Scholar
  25. 25.
    Dunegan, H.L.: Average signal level (ASL) application. The DECI Report— 2 July 1998, http://www.deci.com (1998)
  26. 26.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition (2nd edn). Academic, San Diego, CA (1990)Google Scholar
  27. 27.
    Batchelor, B.G. (ed.): Pattern Recognition—Ideas in Practice. Plenum Press, New York (1978)MATHGoogle Scholar
  28. 28.
    Andrews, H.C.: Introduction to mathematical techniques in pattern recognition. Wiley, New York (1972)MATHGoogle Scholar
  29. 29.
    Bohse, J., Mair, G.W., Anders, S.: Procedure for evaluation of composite cylinders using acoustic emission. deliverable D SA7 SP SAR—Safety assessment and regulations, EU Project No. 502667 STORHY—hydrogen storage systems for automotive application (2006)Google Scholar
  30. 30.
    Duffner, E., Gregor, C., Bohse, J.: Überwachung der Fertigungsqualität von Faserverbund-Druckbehältern mittels Schallemissionsprüfung. In: DGZfP-Berichtsband CD-18. Kolloquium Schallemission, 27–28. October, Wetzlar (D) (2011)Google Scholar
  31. 31.
    EN 12817: LPG equipment and accessories—Inspection and requalification of LPG tanks up to and including 13 m³; Annex C (normative): Acoustic emission testingGoogle Scholar
  32. 32.
    EN 12819: LPG equipment and accessories—Inspection and requalification of LPG tanks greater than 13 m³; Annex C (normative): Acoustic emission testingGoogle Scholar
  33. 33.
    Schauritsch, G., Tscheliesnig, P.: Die Schallemissionsprüfung als integrales Prüfverfahren für die Beurteilung von Flüssiggaslagerbehältern—Erfahrungsbericht. DACH-Jahrestagung 2000, Innsbruck (A) (2000)Google Scholar
  34. 34.
    Tscheliesnig, P., Schauritsch, G.: Applikation eines automatischen AT-Auswertesystems bei der Prüfung schwer zugänglicher Strukturen. DACH-Jahrestagung 2007, Fürth (D) (2007)Google Scholar
  35. 35.
    Tscheliesnig, P., Schauritsch, G.: Acoustic emission testing (AT) of underground concrete covered LPG tanks/contrôle par émission acoustique de réservoirs GPL enterrés recouverts de béton. ESOPE 2010, Paris (F) (2010)Google Scholar
  36. 36.
    Anastasopoulos, A., Kourousis, D., Bollas, A.: Acoustic emission leak detection of liquid filled buried pipeline. J. Acoust. Emission 27, 27–39 (2009)Google Scholar
  37. 37.
    Tscheliesnig, P.: Thirty years experience of industrial applications of acoustic emission testing at TÜV Austria. J. Acoust. Emission 25, 276–285 (2007)Google Scholar
  38. 38.
    CEN TC 138/WI001380076: Non-destructive testing—Acoustic emission—Leak detection by means of acoustic emissionGoogle Scholar
  39. 39.
    Tscheliesnig, P., Lackner, G., Gori, M., Vallen, H., van de Loo, P.J. Herrmann, B.: Inspection of flat bottomed storage tanks by acoustical methods. Classification of corrosion related signals. In: Proceedings 24th EWGAE conference, Senlis (F) (2000)Google Scholar
  40. 40.
    Lackner, G., scheliesnig, P.: Acoustic emission testing on flat bottomed storage tanks: How to condense acquired data to a reliable statement regarding floor condition. J. Acoust. Emission 20, 179–187 (2002)Google Scholar
  41. 41.
    Lackner, G., Tscheliesnig, P.: Field testing of flat bottomed storage tanks with acoustic emission—A review on the gained experience. J. Acoust. Emission 22, 201–207 (2004)Google Scholar
  42. 42.
    Ohtsu, M., Isoda, T., Tomoda, Y.: Acoustic emission techniques standardized for concrete structures. J. Acoust. Emission 25, 21–32 (2007)Google Scholar
  43. 43.
    NDIS 2421: Recommended practice for in situ monitoring of concrete structures by AE, Japanese Society for Nondestructive InspectionGoogle Scholar
  44. 44.
    Shiotani, T., Aggelis, D.M.: Evaluation of repair effect for deteriorated concrete piers of intake dam using AE activity. J. Acoust. Emission 25, 69–79 (2007)Google Scholar
  45. 45.
    Pollock, A.A.: Acoustic emission amplitude distributions. In: McGonnagle, W.J. (ed.) International Advances in Nondestructive Testing, vol. 7, pp. 215–240. Reprinted as Technical Report DE 79-1O, Dunegan/Endevco, San Juan Capistrano, California. Redistributed as PAC TR-103-91-5/89 (1981)Google Scholar
  46. 46.
    Shiotani, T.: Evaluation of long-term stability for rock slope by means of acoustic emission technique. NDT&E Int. 39(3), 217–228 (2006)CrossRefGoogle Scholar
  47. 47.
    Shiotani, T., Aggelis, D.G., Makishima, O.: Global monitoring of concrete bridge using acoustic emission. J. Acoust. Emission 25, 308–315 (2007)Google Scholar
  48. 48.
    Pullin, R., Holford, K.M., Lark, R.J., Eaton, M.J.: Acoustic emission monitoring of bridge structures in the field and laboratory. J. Acoust. Emission 26, 172–181 (2008)Google Scholar
  49. 49.
    Kalicka, M.: Acoustic emission as a monitoring method in prestressed concrete bridges health condition evaluation. J. Acoust. Emission 27, 18–26 (2009)Google Scholar
  50. 50.
    Nair, A., Cai, C.S.: Acoustic emission monitoring of bridges: Review and case studies. Eng. Struct. 32, 1704–1714 (2010)CrossRefGoogle Scholar
  51. 51.
    Schumacher, T., Higgins, C.C., Lovejoy, S.C.: Estimating operating load conditions on reinforced concrete highway bridges with b-value analysis from acoustic emission monitoring. Struct. Health Monit. Int. J. 10(1), 17–32 (2011)CrossRefGoogle Scholar
  52. 52.
    Grosse, C.U., Ohtsu, M. (eds.).: Acoustic emission testing: basics for research—applications in civil engineering. Springer, Berlin Heidelberg (2008) ISBN 978-3-540-69895-1Google Scholar
  53. 53.
    Hay, D.R., Cavaco, J.A., Mustafa, V.: Monitoring the civil infrastructure with acoustic emission: bridge case studies. J. Acoust. Emission 27, 1–10 (2009)Google Scholar
  54. 54.
    Kosnik, D.E.: Acoustic emission testing of a difficult-to-reach steel bridge detail. J. Acoust. Emission 27, 11–17 (2009)Google Scholar
  55. 55.
    Rogers, L., Carlton, J.: The acoustic emission technique: Application to marine structures and machinery. In: Proceedings Lloyd’s Register Technology Days 2010, Lecture, vol 6, pp 85–108Google Scholar
  56. 56.
    Rogers, L.: Structural and engineering monitoring by acoustic emission methods—fundamentals and applications. Lloyd’s Register of Shipping, Technical Investigation Department, September 2001Google Scholar
  57. 57.
    White, G.A., Klug, M.T., Gorman, J.A., Rodgers, J.M., Griffin, R.: Failure of a seamless 21/4Cr-1Mo hot-reheat pipe bend—Acoustic emission testing and fitness for service of other steam pipe bends. In: Proceedings, 2010 ASME Pressure Vessels and Piping Division Conference, Bellevue, WA (USA) (2010)Google Scholar
  58. 58.
    Rodgers, J.M.: Acoustic emission testing of seam-welded high energy piping systems in fossil power plants. J. Acoust. Emission 25, 286–293 (2007)Google Scholar
  59. 59.
    Blanch, M.J., Dutton, A.G.: Acoustic emission monitoring of field tests of an operating wind turbine. Key engineering materials, vols. 245–246, pp. 475–482, Trans Tech Publications, Switzerland (2003)Google Scholar
  60. 60.
    Martin, T., Jones, A., Read, I., Murray, S., Haynes, D., Lloyd, P., Foote, P., Noble, R., Tunnicliffe, D.: Structural health monitoring of a carbon fibre structure using low profile piezoelectric, optical and MEMS sensors. Key Eng. Mater. 204(2), 371–380 (2001)CrossRefGoogle Scholar
  61. 61.
    Bohse, J., Brunner, A.J.: Acoustic emission in delamination investigation. In: Sridharan, S. (ed.) Delamination Behaviour of Composites, Part II, Chapter 8, pp. 217-277. Woodhead Publishing Ltd, Cambridge (2008)Google Scholar
  62. 62.
    Bohse, J., Mair, G.W., Novak, P.: Acoustic emission testing of high-pressure composite cylinders. Adv. Mater. Res. 13–14, 267–272. Trans Tech Publications, Switzerland (2006)Google Scholar
  63. 63.
    Bohse, J.: Acoustic emission examination of polymer-matrix composites. J. Acoust. Emission 22, 208–223 (2004)Google Scholar
  64. 64.
    Prosser, W., Madras, E., Studor, G., Gorman, M.: Acoustic Emission detection of impact damage on space shuttle structures. J. Acoust. Emission 23, 37–46 (2005)Google Scholar
  65. 65.
    Nunez, A., Miller, R.K., Ward, B.: Reduction of failure risk in power transformers through the detection and location of incipient faults using acoustic emission. In: Proceedings of Tech Con 2003 North America, TJH2b Analytical Services Inc (2003)Google Scholar
  66. 66.
    Transformer testing—Locating PD and gassing sources in transformers by acoustics. Information leaflet of Physical Acoustics Limited, Cambridge, UKGoogle Scholar
  67. 67.
    Spies, T., Hesser, J., Eisenblätter, J., Eilers, G.: Minitoring of the rockmass in the final repository Morsleben: Experiences with acoustic emission measurements and conclusions. In: Proceedings of DisTec 2004, Berlin, pp. 303–311 (2004)Google Scholar
  68. 68.
    Manthei, G., Eisenblätter, J., Spies, T., Eilers, G.: Source parameters of acoustic emission events in salt rock. J. Acoust. Emission 19, 100–108 (2001)Google Scholar
  69. 69.
    Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D.: Advanced monitoring of machining operations. CIRP Ann. Manuf. Technol. 59, 717–739 (2010)Google Scholar
  70. 70.
    Mba, D., Rao Raj, B.K.N.: Development of acoustic emission technology for condition monitoring of rotating machines: Bearings, pumps, gearboxes, engines and rotating structures. Shock Vibration Digest 38(1), 3–16 (2006)CrossRefGoogle Scholar
  71. 71.
    Jantunen, E.: A summary of methods applied to tool condition monitoring in drilling. Int. J. Machine Tools Manuf. 42, 997–1010 (2002)CrossRefGoogle Scholar
  72. 72.
    Sato, A., Nakashima, E., Koike, M., Maeda, M., Yoshiara, T., Nishimoto, S.: Development of abnormality detection technology for electric generation steam turbines. J. Acoust. Emission 19, 202–208 (2001)Google Scholar
  73. 73.
    Hall, L.D., Mba, D., Bannister, R.H.: Acoustic emission signal classification in condition monitoring using the Kolmogorov–Smirnov statistic. J. Acoust. Emission 19, 209–228 (2001)Google Scholar
  74. 74.
    Alfayez, L., Mba, D.: Detection of incipient cavitation and best efficiency point in a 2.2 MW centrifugal pump using acoustic emission. J. Acoust. Emission 22, 77–82 (2004)Google Scholar
  75. 75.
    Baran, I., Nowak, M., Darski, W.: Application of acosutic emission in monitoring of failure in slide bearings. J. Acoust. Emission 25, 341–347 (2007)Google Scholar
  76. 76.
    Löhr, M.: Testing of diamond-like carbon coatings under slip rolling friction monitored by acoustic emission. J. Acoust. Emission 22, 190–200 (2004)Google Scholar
  77. 77.
    Mazal, P., Horti, F., Drab, M., Slunecko, T.: Some possibilities of ae signal treatment at contact damage tests of materials and bearings. J. Acoust. Emission 26, 189–198 (2008)Google Scholar
  78. 78.
    Kious, M., Ouahabi, A., Boudraa, M., Serra, R., Cheknane, A.: Detection process approach of tool wear in high speed milling. Measurement 43, 1439–1446 (2010)CrossRefGoogle Scholar
  79. 79.
    Elforjani, M., Mba, D.: Detecting the onset, propagation and location of non-artificial defects in a slow rotating thrust bearing with acoustic emission. Insight 50(5), 264–268 (2008)CrossRefGoogle Scholar
  80. 80.
    Kanthababu, M., Shunmugam, M.S., Singaperumal, M.: Tool condition monitoring process using acoustic emission signals. Int. J. Autom. Control 2(1), 99–112 (2008)CrossRefGoogle Scholar
  81. 81.
    Elforjani, M., Mba, D.: Natural mechanical degradation measurements in slow speed bearings. Eng. Fail. Anal. 16, 521–532 (2009)CrossRefGoogle Scholar
  82. 82.
    Elforjani, M., Mba, D.: Detecting natural crack initiation and growth in slow speed shafts with the acoustic emission technology. Eng. Fail. Anal. 16, 2121–2129 (2009)CrossRefGoogle Scholar
  83. 83.
    He, Y., Zhang, X., Friswell, M.I.: Defect diagnosis for rolling element bearings using acoustic emission. J Vibr. Anal. 131, 061012-1–061012-10 (2009)Google Scholar
  84. 84.
    Al-Balushi Khamis, R., Addali, A., Charnley, B., Mba, D.: Energy Index technique for detection of acoustic emission associated with incipient bearing failures. Appl. Acoust. 71(9), 812–821 (2010)CrossRefGoogle Scholar
  85. 85.
    Shiroishi, J., Li, Y., Liang, S., Kurfess, T., Danyluk, S.: Bearing condition diagnostics via vibration and acoustic emission measurements, vol. 11(5), pp 693–705 (1997)Google Scholar
  86. 86.
    Castro, E., Piotrkowski, R., Gallego, A., Climent, A.B.: Discrimination of acoustic emission hits from dynamic tests of a reinforced concrete slab. J. Acoust. Emission 28, 120–128 (2010)Google Scholar
  87. 87.
    Thakkar, N.A., Steel, J.A., Reuben, R.L.: Rail-wheel interaction monitoring using Acoustic Emission: A laboratory study of normal rolling signals with natural rail defects. Mech. Sys. Signal Processing 24, 256–266 (2010)CrossRefGoogle Scholar
  88. 88.
    Liao, T.W.: Feature extraction and selection from acoustic emission signals with an application in grinding wheel condition monitoring. Eng. Appl. Artif. Intell. 23, 74–84 (2010)CrossRefGoogle Scholar
  89. 89.
    Abellan-Nebot, J.V., Subiron, F.R.: A review of machining monitoring systems based on artificial intelligence process models. Int. J. Adv. Manuf. Technol. 47, 237–257 (2010)CrossRefGoogle Scholar
  90. 90.
    Zvokelj, M., Zupan, S., Prebil, I.: Multivariate and multiscale monitoring of large-size low-speed bearings using Ensemble Empirical Mode Decomposition method combined with principal component analysis. Mech. Sys. Signal Processing 24, 1049–1067 (2010)CrossRefGoogle Scholar
  91. 91.
    Taha, Z., Widiyati, K.: Artificial neural network for bearing defect detection based on acoustic emission. Int. J. Adv. Manuf. Technol. 50, 289–296 (2010)CrossRefGoogle Scholar
  92. 92.
    Mirhadizadeh, S.A., Moncholi, E.P., Mba, D.: Influence of operational variables in a hydrodynamic bearing on the generation of acoustic emission. Tribol. Int. 43, 1760–1767 (2010)CrossRefGoogle Scholar
  93. 93.
    Saloni, D.E., Lemaster, R.L., Jackson, S.D.: Process monitoring evaluation and implementation for the wood abrasive machining process. Sensors 10, 10401–10412 (2010)CrossRefGoogle Scholar
  94. 94.
    Eftekharnejad, B., Carrasco, M.R., Charnley, B., Mba, D.: The application of spectral kurtosis on acoustic emission and vibrations from a defective bearing. Mech. Sys. Signal Processing 25, 266–284 (2011)CrossRefGoogle Scholar
  95. 95.
    Elangovan, M., Babu Devasenapti, S., Sakthivel, N.R., Ramachandran, K.I.: Evaluation of expert system for condition monitoring of a single point cutting tool using principle component analysis and decision tree algorithm. Expert Sys. Appl. 38, 4450–4459 (2011)CrossRefGoogle Scholar
  96. 96.
    Marinescu, I., Axinte, D.A.: An automated monitoring solution for avoiding an increased number of surface anomalies during milling of aerospace alloys. Int. J. Machine Tools Manuf. 51, 349–357 (2011)CrossRefGoogle Scholar
  97. 97.
    Loutas, T.H., Roulias, D., Pauly, E., Kostopoulos, V.: The combined use of vibration, acoustic emission and oil dbris on-line monitoring towards a more effective condition monitoring of rotating machinery. Mech. Sys. Signal Processing 25, 1339–1352 (2011)CrossRefGoogle Scholar
  98. 98.
    Hoskins, T.J., Dearn, K.D., Kukureka, S.N., Walton, D.: Acosutic noise from polymer gears—A tribological investigation. Mater. Des. 32, 3509–3515 (2011)CrossRefGoogle Scholar
  99. 99.
    Kilundu, B., Chiementin, X., Duez, J., Mba, D.: Cyclostationarity of acosutic emissions (AE) monitoring bearing defects. Mech. Sys. Signal Processing 25, 2061–2072 (2011)CrossRefGoogle Scholar
  100. 100.
    Reddy, T.S., Reddy, C.E.: On-line monitoring of tool wear and surface roughness by acoustic emissions in CNC turning. Int. J. Rob. Autom. 26(3), 305–312 (2011)Google Scholar
  101. 101.
    Zhou, J.H., Pang, C.K., Zhong, Z.W., Lewis, F.L.: Tool wear monitoring using acoustic emissions by dominant-feature identification. IEEE Trans. Instrum. Meas. 60(2), 547–559 (2011)CrossRefGoogle Scholar
  102. 102.
    Bollas, K., Papasalouros, D., Kourousis, D., Anastasopoulos, A.: Acoustic emission inspection of rail wheels. J. Acoust. Emission 28, 215–228 (2010)Google Scholar
  103. 103.
    Scheer, C., Reimche, W., Bach, F.-W.: Early fault detection at gear units by acoustic emission and wavelet analysis. J. Acoust. Emission 25, 331–340 (2007)Google Scholar
  104. 104.
    Ozevin, D., Dong, J., Godinez, V., Carlos, M.: Damage assessment of gearbox operating in high noisy environment using waveform streaming approach. J. Acoust. Emission 25, 355–363 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.BAM—Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations