Diagnostics in Arts and Culture

Chapter

Abstract

Investigations of physical properties and chemical composition generate important data for answering cultural–historical questions that cannot be solved by historical and philological methods alone. In its individual materiality, each cultural asset is the result of a wide variety of influences (e.g. production, storage, restoration, preservation). Due to recent technological developments (e.g. miniaturization of structural units, enlargement of memory capacity), technical diagnostics in art and culture are becoming more and more coveted in such fields of trans-disciplinary research.

Keywords

Cultural Asset Technical Diagnostics Restoration Treatment Archaeological Object Liquid Nitrogen Cool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mantler, M., Schreiner, M.: X-Ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom. 29(1), 3–17 (2000)CrossRefGoogle Scholar
  2. 2.
    Janssens, K., Vittiglio, G., Dereadt, I., Aerts, A., Vekemans, B., Vincze, L., Wie, F., De Ryck, I., Schalm, O., Adams, F., Rindby, A., Knöchel, A., Simionovici, A., Snigirev, A.: Use of microscopic XRF for non-destructive analysis in art and archeometry. X-Ray Spectrom. 29, 73–91 (2000)CrossRefGoogle Scholar
  3. 3.
    Fischer, C.O., Kelch, J., Laurenze, C., Leuther, W., Slusallek, K.: Autoradiography of paintings after Neutron activation at a cold neutron guide. Kerntechnik 51, 9–13 (1987)Google Scholar
  4. 4.
    Bosiljkov, V., Maierhofer, CH., Köpp, CH., Wöstmann, J.: Assessment of structure through non-destructive tests (NDT) and minor destructive tests (MDT) investigation: case study of the church at carthusian monastery at Zice (Slovenia): International journal of architectural heritage: conservation, analysis, and restoration vol. 4, pp 1–15. Taylor and Francis, London (2010)Google Scholar
  5. 5.
    Lahanier, CH., Preusser, F.D., Van Zelst., D.: Study and conservation of museum objects: Use of classical analytical techniques. Nuclear Instrum. Methods Phys. B 14, 1–9 (1986)Google Scholar
  6. 6.
    Asperen de Boer, J.R.J.: An introduction to the scientific examination of paintings. In: Nederlands Kunsthistorisch Jaarboek, vol. 26, pp. 1–40 (1975)Google Scholar
  7. 7.
    Mrusek, R., Fuchs, R., Oltrogge, D.: Spektrale Fenster zur Vergangenheit - Ein neues Reflektographieverfahren zur Untersuchung von Buchmalerei und historischem Schriftgut. Naturwissenschaften vol. 82, Heidelberg, 68–79 (1995)Google Scholar
  8. 8.
    Teuchos - Zentrum für Handschriften- und Textforschung 2011: http://www.teuchos.uni-hamburg.de. Accessed 15 Sep 2011
  9. 9.
    Klockenkämper, R.: Total-reflection X-Ray fluorescence analysis. Wiley, New York (1997)Google Scholar
  10. 10.
    Vandenabeele, P., van Bohlen, A., Moens, L., Klockenkämper, R., Joukes, F., Dewispelaere, G.: Spectroscopic examination of two Egyptian masks - a combined method approach. Anal. Lett. 33, 3315–3332 (2000)CrossRefGoogle Scholar
  11. 11.
    Mommsen, H., Beier, T.H., Dittmann, H., Heimermann, D., Hein, A., Rosenberg, A., Boghardt, M.: X-Ray fluorescence analysis with synchrotron radiation on the inks and papers of incunabula. Archaeometry 38, 347–357 (1996)CrossRefGoogle Scholar
  12. 12.
    Schreiner, M., Mantler, M.: Proceedings of the 4th International Conference on Non-destructive Testing of Museum Objects, pp. 221–230. Berlin (1994)Google Scholar
  13. 13.
    Denker, A., Opitz-Coutureau, J., Griesser, M., Denk, R., Winter, H.: Non-destructive analysis of Medieval silver coins. In: Denker, A., Adriaens, A., Dowsett, M., Giumlia-Mar, A. (eds.) COST Action G8: Non-Destructive Testing and Analysis of Museum Objects, pp. 55–72. Fraunhofer IRB Verlag, Stuttgart (2006)Google Scholar
  14. 14.
    Fiorini, C., Longoni, A.: Application of a new noncryogenic X-ray detector in portable instruments for archaeometric analyses. Rev. Sci. Instrum. 69, 1523–1528 (1998)CrossRefGoogle Scholar
  15. 15.
    Vittiglio, G., Janssens, K., Vekemans, B., Adams, F., Oost, A.: A compact small-beam XRF instrument for in situ analysis of objects of historical and/or artistic value. Spectrochim. Acta Part B 54, 1697–1710 (1999)CrossRefGoogle Scholar
  16. 16.
    Bichlmeier, S., Janssens, K., Heckel, J., Gibson, D., Hoffmann, P., Ortner, H.M.: Component selection for a compact micro-XRF spectrometer. X-Ray Spectrom. 30, 8–14 (2001)CrossRefGoogle Scholar
  17. 17.
    Bronk, H., Röhrs, S., Bjeoumikhov, A., Langhoff, N., Schmalz, G., Wedell, R., Gorny, H.E., Herold, A., Waldschläger, U.: ArtTAX®: A new mobile spectrometer for energy dispersive micro X-Ray fluorescence spectrometry on art and archaeological objects. Fresenius’. J. Anal. Chem. 371, 307–316 (2001)CrossRefGoogle Scholar
  18. 18.
    Reiche, I., Radtke, M., Berger, A., Görner, W., Ketelsen, T., Merchel, S., Riederer, J., Riesemeier, H., Roth, M.: Spatially resolved Synchrotron-induced X-ray fluorescence analyses of metal point drawings and their mysterious inscriptions. Spectrochim. Acta B. 59, 1657–1662 (2004)CrossRefGoogle Scholar
  19. 19.
    Wilke, M., Hahn, O., Woodland, A., Rickers, K.: The oxidation state of iron determined by Fe K-edge XANES - application to iron gall ink in historical manuscripts. J. Anal. At. Spectrom. 24, 1364–1372 (2009)CrossRefGoogle Scholar
  20. 20.
    Welz, B., Sperling, M.: Atomic Absorption Spectrometry. Wiley-VCH, Weinheim (1999)Google Scholar
  21. 21.
    De, B., Pereira, C.E., Miekeley, N., Poupeau, G., Küchler, I.L.: Determination of minor and trace elements in obsidian rock samples and archaeological artifacts by laser ablation inductively coupled plasma mass spectrometry using synthetic obsidian standards. Spectrochim. Acta Part B: At. Spectro. 56(10), 1927–1940 (2001)CrossRefGoogle Scholar
  22. 22.
    Coleman, M.E.: Radioanalytical multi-elemental analysis: new methodology and archaeometric applications, Ph.D-Thesis, University of Missouri-Columbia (2010)Google Scholar
  23. 23.
    Marengo, E., Liparota, M.C., Robotti, E., Bobba, M.: Monitoring of paintings under exposure to UV light by ATRFT-IR spectroscopy and multivariate control charts. Vib. Spectrosc. 40, 225–234 (2005)CrossRefGoogle Scholar
  24. 24.
    Miliani, C., Rosi, F., Borgia, I., Benedetti, P., Brunetti, B.G., Sgamellotti, A.: Fiber-optic Fourier transform mid-infrared reflectance spectroscopy: A suitable technique for in situ studies of mural paintings. Appl. Spectrosc. 61, 299–3293 (2007)CrossRefGoogle Scholar
  25. 25.
    Salvado, N., Buti, S., Tobin, M.J., Pantos, E., Prag, A.J., Pradell, T.: Advantages of the use of SR-FT-IR microspectroscopy: Applications to cultural heritage. Anal. Chem. 77, 3444–3451 (2005)CrossRefGoogle Scholar
  26. 26.
    Bartoll, J., Hahn, O., Schade, U.: Application of synchrotron infrared radiation in the study of organic coatings in cross sections. Stud. Conserv. 53(1), 1–8 (2008)Google Scholar
  27. 27.
    A2 Technologies: 2011, http://www.a2technologies.com/exoscan_handheld.html. Accessed 15 Sept 2011
  28. 28.
    Clark, R.J.H.: Raman microscopy: application to the identification of pigments on medieval manuscripts. Chem. Soc. Rew. 24, 187–196 (1995)CrossRefGoogle Scholar
  29. 29.
    Lewis, I.R., Edwards, H. (eds.): Handbook of Raman spectroscopy (Practical Spectroscopy) Marcel Dekker AG Switzerland (2001)Google Scholar
  30. 30.
    Baumer, U., Dietemann, P., Koller, J.: Identification of resinous materials on 16th and 17th century reverse glass objects by gas chromatography/mass spectrometry. Int. J. Mass Spectrom. 284, 131–141 (2009)CrossRefGoogle Scholar
  31. 31.
    Dietemann, P., Herm, C.: GALDI-MS applied to characterise natural varnishes and binders. In: Colombini, M.P., Modugno, F. (eds.) Organic Mass Spectrometry in Art and Archaeology, pp. 131–163. Wiley, Chichester (2009)CrossRefGoogle Scholar
  32. 32.
    Unger, A., Schwerdtfeger, S.: The dye analysis of the ribbons from the wrapping. In: De Moor, A., Fluck, C. (eds.) Methods of dating ancient textiles of the 1st millennium AD from Egypt and neighbouring countries, pp. 67–69. Lannoo Publishers, Tielt (2007)Google Scholar
  33. 33.
    Schieweck, A., Salthammer, T., Watts, S.F.,Salthammer, T., Uhde, E.: Organic indoor air pollutants. Occurrence, measurement, evaluation. vol. 2. compl. rev. ed. Wiley-VCH, Weinheim, (2009)Google Scholar
  34. 34.
    Hahn, O., Wilke, O., Jann, O.: Characterisation of air quality in museum show cases. Indoor Air (2005)Google Scholar
  35. 35.
    Jull, A., Donahue, J.T., Broshi, M., Tov, E.: Radiocarbon dating of scrolls and linen fragments from the Judean desert. Radiocarbon 37, 11–19 (1995)Google Scholar
  36. 36.
    Schweingruber, F.E.: Tree rings: basics and applications of dendrochronology. Dordrecht and Boston (1988)Google Scholar
  37. 37.
    Goedicke, C.: Authentizitätsuntersuchungen an keramischen Artefakten im Wandel der Zeit: der Stand der Technik 2007. In: Staatl. Museen zu Berlin, Museum f. Asiat.Kunst-Ostasiat. Kunstsammlung (eds.) Die Kunst des Fälschens - untersucht und aufgedeckt, pp. 31–38, 2007Google Scholar
  38. 38.
    Landesamt für Denkmalpflege und Archäologie: The Nebra Sky Disc 2008. http://www.lda-lsa.de/en/nebra_sky_disc/. Accessed 15 Sept 2011
  39. 39.
    Pernicka, E., Radtke, M., Riesemeier, H., Wunderlich, C.H.: European network of competence at 1600 BC. Highlights/BESSY 2003, 8–9 (2004)Google Scholar
  40. 40.
    Görner, W., Eichelbaum, M., Matschat, R., Rademann, K., Radtke, M., Reinholz, U., Riesemeier, H.: Non-destructive investigation of composition, chemical properties and structure of materials by synchrotron radiation. Insight 48, 540–544 (2006)CrossRefGoogle Scholar
  41. 41.
    Ehser, A., Borg, G., Brauns, M., Pernicka, E.: Cornwall als mögliche Goldquelle der Himmelsscheibe von Nebra? - Ein Geochemischer Vergleich. METALLA, Sonderheft 3, Beiträge zur Jahrestagung Archäometrie und Denkmalpflege, pp. 60–61 (2010)Google Scholar
  42. 42.
    Hahn, O., Malzer, W., Kanngießer, B., Beckhoff, B.: Characterization of iron gall inks in historical manuscripts using X-ray fluorescence spectrometry. X-Ray Spectrom. 33, 234–239 (2004)CrossRefGoogle Scholar
  43. 43.
    Malzer, W., Hahn, O., Kanngießer, B.: A fingerprint model for inhomogeneous ink paper layer systems measured with micro X-ray fluorescence analysis. X-Ray Spectrom. 33, 229–233 (2004)CrossRefGoogle Scholar
  44. 44.
    Wolf, U., Hahn, O., Wolff, T.: Wer schrieb was? Röntgenfluoreszenzanalyse am Autograph von J. S. Bachs Messe in h-Moll BWV 232, In: Neue Bach Gesellschaft e.V. (ed.) Bach-Jahrbuch 2009, pp. 117–133. Evangelische Verlagsanstalt, Leipzig (2009)Google Scholar
  45. 45.
    Rabin, I., Hahn, O., Wolff, T., Mašic, A., Weinberg, G.: On the origin of the ink of the Thanksgiving Scroll (1QHodayota). Dead Sea Discoveries 16, 97–106 (2009)CrossRefGoogle Scholar
  46. 46.
    Rabin, I., Hahn, O., Wolff, T., Kindzorra, E., Masic, A., Schade, U., Weinberg, G.: Characterisation of the writing material of the Dead Sea Scrolls In: Qumran - Holistic Qumran-Trans-disciplinary research of Qumran and the Dead Sea scrolls, pp. 123–134. Brill (2010)Google Scholar
  47. 47.
    Hahn, O., Oltrogge, D., Bevers, H.: Coloured prints of the 16th century - non destructive analyses on coloured engravings from Albrecht Dürer and contemporary artists. Archaeometry 46(1), 273–282 (2004)CrossRefGoogle Scholar
  48. 48.
    Dackerman, S. (ed.): Painted prints: the revelation of colour in northern Renaissance and Baroque engravings, etchings, and woodcuts, Pennsylvania State University Press, University Park, Pennsylvania (2002)Google Scholar
  49. 49.
    Czichos, H.: Was ist falsch am falschen Rembrandt? Und wie hart ist Damaszener Stahl? Wie man mit Technik Kunst erforscht, prüft und erhält. Nicolaische Verlagsbuchhandlung GmbH Berlin (2002)Google Scholar
  50. 50.
    Wikipedia: Wachsbüste der Flora 2010, http://de.wikipedia.org/wiki/Wachsbüste_der_Flora. Accessed 15 Sept 2011
  51. 51.
    Reitz, M.: Auf der Fährte der Zeit. Mit naturwissenschaftlichen Methoden vergangene Rätsel entschlüsseln. Wiley-VCH, Weinheim (2003)Google Scholar
  52. 52.
    Ost, H.: Edeltrödel, Neues zu der Leonardo da Vinci oder seinem Umkreis zugeschriebenen “Flora” des Bode-Museums in Berlin, 2008. http://archiv.ub.uni-heidelberg.de/artdok/volltexte/2008/494/ pdf/Ost_Edeltroedel2008.pdf. Accessed 15 Sept 2011
  53. 53.
    Krekel, CH.: Chemische Struktur historischer Eisengallustinten. In: Tintenfraßschäden und ihre Behandlung; Eds. G. Banik and H. Weber, Werkhefte der staatlichen Archivverwaltung Baden-Württemberg, Serie A Landesarchivdirektion, Heft 10, Kohlhammer Stuttgart, pp. 25–36 (1999)Google Scholar
  54. 54.
    Jembrih-Simbürger, D., Schreiner, M., Puchinger, L., Hofmann, C.H., Eichinger, R.: Austrian ink corrosion project (Part 2): Micro-XRF and photometric determination of cellulose degradation products. Papier-Restaurierung 5(4), 26–32 (2004)Google Scholar
  55. 55.
    Reissland, B., Ligterink, F. (eds.): The iron gall ink Website 2011, http://ink-corrosion.org. Accessed 15 Sept 2011
  56. 56.
    Hahn, O., Wilke, M., Wolff, T.: Influence of aqueous Ca-phytate/Ca-hydrogen carbonate treatment on the chemical composition of iron gall inks. Resaurator 29, 155–162 (2008)Google Scholar
  57. 57.
    Tétreault, J.: Measuring acidity of volatile products, CCI 1992. www.cci-icc.gc.ca (1992)
  58. 58.
    Risholm-Sundmann, M., Lundgren, M., Vestin, E., Herder, P.: Emissions of acetic acid and other volatile organic compounds from different species of solid wood. Holz als Roh- und Werkstoff 56, 125–129 (1998)CrossRefGoogle Scholar
  59. 59.
    Grzywacz, C.M.: Pollution monitoring in storage and display cabinets: carbonyl pollutant levels in relation to artefact deterioration. In: Preventive Conservation, IIC Congress 1994, preprints, pp. 164–170 (1994)Google Scholar
  60. 60.
    Waller, C.: Long life for art, 2003. http://www.waller.de. Accessed 15 Sept 2011
  61. 61.
    Schieweck, A., Salthammer, T.: Schadstoffe in Museen, Bibliotheken und Archiven, 1. Aufl. Wolfram Schmidt, Braunschweig (2006)Google Scholar
  62. 62.
    Ryhl-Svendsen, M., Glastrup, J.: Direct measurements of acetic acid by SPME-GC/MS, and calculation of emission rates from emission chamber tests. In: IAQ 2000, Presentation 14, http://iaq.dk/iap/iaq2000/2000_14.htm
  63. 63.
    Wilke, O., Jann, O., Brödner, D.: VOC and SVOC contribution of papers for hardcopy devices to indoor air pollution. In: Proceedings of Healthy Buildings, pp. 289–295 (2003)Google Scholar
  64. 64.
    Röhmich, H.: Glassensorstudie zur Bewertung des Raumklimas in Vitrinen mit verschiedenen Belüftungsvarianten. Closing report, by order of Glasbau Hahn GmbH (1998)Google Scholar
  65. 65.
    Pilz, M.: Umweltsituation im Grünen Gewölbe Dresden - Charakterisierung mithilfe von Glassensoren. Restauro 6, 422–427 (2000)Google Scholar
  66. 66.
    Green, L.R., Thickett, D.: Testing materials for the storage and display of artefacts—a revised methodology. Stud. Conserv. 40, 145–152 (1995)CrossRefGoogle Scholar
  67. 67.
    Hahn, O., Wilke, O., Jann, O.: Indoor air quality in show cases - an attempt to standardise emission measurements. ZKK 21(2), 359–364 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und—prüfungBerlinGermany

Personalised recommendations