Advertisement

Electric Power Stations and Transmission Networks

  • Wolfgang Habel 
  • Gerd Heidmann
Chapter

Abstract

Diagnosis of the operational condition of facilities in power stations and transmission networks is of significant importance to ensure their reliable operation. Early detection of incipient faults or overload avoids failure of important parts of the power supply system. Diagnostics also allows planning maintenance activities to exploit full performance of the equipment and therefore enables economical operation of the quite expensive facilities. A variety of measuring and surveillance methods as well as very different sensor types installed are used to get information about the behaviour of important facility components. This chapter gives an overview on the most important facilities to be monitored, and an introduction to diagnostic tasks and strategies applied to these facilities. The most commonly used measurement and diagnostic methods are described such as optical methods (free-space optical detection, usage of electro-optic and magneto-optic effects as well as of optical fibre-guided methods), acoustic methods and mechanical methods. These diagnostic and monitoring methods are explained based on selected examples with regard to components of high-voltage (HV) transformers, cable systems, switchgears and circuit breakers, overhead transmission lines and finally generators and motors. New developments and trends in high power facilities and grids, and the corresponding diagnostic tasks are described at the end of this chapter.

Keywords

Fibre Bragg Grating Circuit Breaker Partial Discharge Faraday Effect Overhead Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Exxon Mobil: Energieprognose 2011–2030 Deutschland. http://www.exxonmobil.com/Germany-German/PA/Files/Energieprognose_2011.pdf. Accessed 20 Feb 2012
  2. 2.
    Gruss, P., Schüth, F.: Die Zukunft der Energie: Die Antwort der Wissenschaft. Ein Report der Max-Planck-Gesellschaft. BECK-Verlag. ISBN 978-3-406-57639-3 (2008)Google Scholar
  3. 3.
    Plath, R.: Anforderungen an Messtechnik und Informationsverarbeitung für die Online-Diagnostik. ETG-Fachbericht 97 der ETG Fachtagung Diagnostik elektrischer Betriebsmittel, März 2004 in Köln, Energietechnische Gesellschaft im VDE (ETG) pp. 21–28 (2004)Google Scholar
  4. 4.
    Fischer, W.: Operational experience of high voltage cable systems in Berlin and future planning for bulkpower lines. In: Presentation at the IEEE PES Swiss Chapter Workshop on Power Cables. 14.04.2010. 50Hertz Transmission GmbH. http://www.50hertz-transmission.net. Accessed 29 Jan 2012 (2010)
  5. 5.
    Porzel, R., Neudert, E., Sturm, M.: Diagnostik der Elektrischen Energietechnik. Expert-Verlag Renningen-Malmsheim (1996)Google Scholar
  6. 6.
    Lemke, E., Gockenbach, E., Kalkner, W.: Messtechnik für die Diagnose elektrischer Betriebsmittel. ETG-Fachbericht 87 der ETG Fachtagung Diagnostik elektrischer Betriebsmittel, Feb 2002 in Berlin, pp. 25–32 (2002)Google Scholar
  7. 7.
    Neumann, C.: Monitoring and diagnostics as a tool for economic utilization of electrical equipment—life extension, advanced technological capability, operational reliability. (In German). ETG-Fachbericht 119 des ETG-Kongress 2009 FT 3+4, Oktober 2009 in Düsseldorf. Paper 4.1, pp. 177–184. VDE Verlag GmbH Berlin, Offenbach (2009)Google Scholar
  8. 8.
    Muhr, M., Pack, S., Schwarz, R., Körbler, B.: Monitoring und Diagnostik in der Hochspannungstechnik (Monitoring and diagnostics in high voltage engineering). e&i elektrotechnik und informationstechnik. 119, 158–164 (2002)Google Scholar
  9. 9.
    Neumann, C.: Monitoring und Diagnose als Werkzeug des Assetmanagements. ETG-Fachbericht 104 der ETG Fachtagung Diagnostik elektrischer Betriebsmittel, Sept 2006 in Kassel, Energietechnische Gesellschaft im VDE (ETG) (2006)Google Scholar
  10. 10.
    DIN V VDE V 0109-1 (VDE V 0109-1): Instandhaltung von Anlagen und Betriebsmitteln in elektrischen Versorgungsnetzen, Teil 1: Systemaspekte und Verfahren. (Maintenance of installations and equipment of electrical energy supply networks, Part 1: System aspects and procedures). VDE Verlag Berlin (2008–2007)Google Scholar
  11. 11.
    DIN V VDE V 0109-2 (VDE V 0109-2): Instandhaltung von Anlagen und Betriebsmitteln in elektrischen Versorgungsnetzen, Teil 2: Zustandsfeststellung von Betriebsmitteln/Anlagen. (Maintenance of installations and equipment of electrical energy supply networks, Part 2: Determination of the condition of equipment/installations). VDE VERLAG Berlin (2010–2011)Google Scholar
  12. 12.
    Kopsidas, K., Rowland, SM., Cotton, I.: Towards the grid of the future: building on and expanding the capacity of the existing networks. In: 17th International Symposium on High Voltage Engineering (ISH 2011), Aug 2011 in Hannover/Germany. Paper G-028, pp. 2343–2348 (2011)Google Scholar
  13. 13.
    Ma, G., Li, C., Quan, J., Jiang, J., Cheng, Y.: A fiber bragg grating tension and tilt sensor applied to icing monitoring on overhead transmission lines. IEEE Trans. Power Deliv. 26, 2163–2170 (2011)CrossRefGoogle Scholar
  14. 14.
    Sölver, CE.: First results from on-going cigre enquiry on reliability of high voltage equipment. CIGRÉ SC A3 & B3 Joint Colloquium in Tokyo 2005. http://www.mtec2000.com/cigre_a3_06/Tokyo.pdf. Accessed 20 Feb 2012 (2005)
  15. 15.
    Riechert, U., Durdic, A., Kudoke, M., Stanek, M.: Monitoring and Diagnostics of Gas-Insulated Switchgear—Development Trends and Range of Applications. ETG-Fachbericht 104 der ETG Fachtagung Diagnostik elektrischer Betriebsmittel, Sept 2006 in Kassel, Energietechnische Gesellschaft im VDE (ETG). pp. 161–166 (2006)Google Scholar
  16. 16.
    van Breen, HJ., Gulski, E., Krieg-Wezelenburg, MG.: PD Activity as a means to classify insulation degradation of large turbo generators. In: 13th International Symposium on High Voltage Engineering, Delft/Netherlands, Sept 2003, p. 304. Millpress, Rotterdam, ISBN 90-77017-79-8 (2003)Google Scholar
  17. 17.
    Tenbohlen, S., Vahidi, F., Gebauer, J., Krüger, M., Müller, P.: Assessment of power transformer reliability. In: 17th International Symposium on High Voltage Engineering (ISH 2011), Aug 2011 in Hannover/Germany, CD-ROM Leibniz Universität Hannover, pp. 2331–2336 (2011)Google Scholar
  18. 18.
    Muhr, M., Schwarz, R.: Experience with optical partial discharge detection. Mater. Sci. Pol. 27, 1139–1146 (2009)Google Scholar
  19. 19.
    Habel, WR., Buchholz, U., Heidmann, G., Hoehse, M., Lothongkam, C.: Fibre-optic sensors for early damage detection in plastic insulations of high-voltage facilities. In: 17th International Symposium on High Voltage Engineering (ISH 2011), Aug 2011 in Hannover/Germany, CD-ROM Leibniz Universität Hannover, pp. 2070–2075 (2011)Google Scholar
  20. 20.
    Buchholz, U., Jaunich, M., Stark, W., Habel, W., Peterson, BAT.: Acoustic data of cross-linked polyethylene (XLPE) and cured liquid silicone rubber (LSR) by means of ultrasonic-DMTA and low frequency DMTA. Paper accepted for publication in IEEE transactions on dielectrics and electrical insulation, Paper 3042 (2012)Google Scholar
  21. 21.
    Stolper, R., Hart, J., Mahatho, N.: The design and evaluation of a multi-spectral imaging camera for the inspection of transmission lines and substation equipment. http://www.specialcamera.com/MC/MCAM_Dev.pdf, p. 14, Accessed 20 Feb 2012 (2011)
  22. 22.
    Product information of Zhejiang ULIRvision Technology Co., LTD (ULIRvision) http://www.ulirvision.com/ Accessed 20 Feb 2012
  23. 23.
    Jaeger, NAF., Rahmatian, F.: Integrated optics Pockels cell high-voltage sensor. IEEE Trans. Power Deliv. (USA) 10, 27–34 (1995)Google Scholar
  24. 24.
    Lux, J.: High Voltage Experimenter’s Handbook. http://home.earthlink.net/~jimlux/hv/hvmain.htm. Accessed 20 Feb 2012 (2001)
  25. 25.
    Bohnert, K.: Faseroptische sensoren, teil 1: Grundlagen. Bulletin SEV/VSE 82, 17–20 (1991)Google Scholar
  26. 26.
    Schultheis, L.: Faseroptische sensoren, teil 4: Faseroptische temperatur- und gasdichtemessung. Bull. SPV/VSE 82, 29–35 (1991)Google Scholar
  27. 27.
    Bosselmann, T.: Innovative applications of fibre-optic sensors in energy and transportation. In: Proceedings of the 17th International SPIE Conference on Optical Fibre Sensors (OFS), vol. 5855, pp. 188–193 (2005)Google Scholar
  28. 28.
    Stierlin, R.: Faseroptische sensoren, teil 2: Faseroptische stromsensoren. Bull. SEVNSE. 82(Heft 1), 21–29 (1991)Google Scholar
  29. 29.
    López-Higuera, J.M. (ed.): Handbook of Optical Fibre Sensing Technology. Wiley, Chichester/UK, p. 828, ISBN-10: 0471820539 (2002)Google Scholar
  30. 30.
    IEC 61757-1 Ed. 2.0: Fibre Optic Sensors—Part 1: Generic Specification. July 2011 (Committee Draft for Vote)Google Scholar
  31. 31.
    Behrend, S., Kalkner, W., Heidmann, G., Emanuel, H., Plath, R.: Synchronous optical and electrical PD measurements. In: 17th International Symposium on High Voltage Engineering (ISH 2011), Aug 2011 in Hannover/Germany, CD-ROM Leibniz Universität Hannover, pp. 1027–1032 (2011)Google Scholar
  32. 32.
    Patentschrift DE 103 42 370: Anordnung zur Überwachung elektrischer Einrichtungen auf das Entstehen von Störlichtbögen (Viehmann M). Anmeldetag: 09 Sept 2003Google Scholar
  33. 33.
    Wang, X.: An optic fiber sensor for partial discharge acoustic detection. Dissertation, Rutgers State University Pennsylvania/USA (2005)Google Scholar
  34. 34.
    Buchholz, U., Petersson, BAT.: Computation of the Surface Velocity of a Cylindrical Layered Dielectric Device Caused by Partial Discharges’. 36. Deutsche Jahrestagung für Akustik. DAGA 2010 der Dt. Gesellschaft für Akustik (DEGA) e.V., März 2010 Berlin, pp. 153–154 (2010)Google Scholar
  35. 35.
    IEC 62478 Ed. 1.0: High voltage test techniques—Measurement of partial discharges by electromagnetic and acoustic methods (proposed horizontal standard) (2011)Google Scholar
  36. 36.
    Coenen, S., Müller, A., Beltle, M., Kornhuber, S.: UHF and acoustic partial discharge localisation in power transformer. In: 17th International Symposium on High Voltage Engineering (ISH 2011), Aug 2011 in Hannover/Germany, CD-ROM Leibniz Universität Hannover, pp. 855–860 (2011)Google Scholar
  37. 37.
    Broniecki, U., Balkon, C., Hannig, M., Kalkner, W., Koltunowicz, W., Obralic, A., Plath, R.: Location of partial discharges in power transformers by combined acoustic and electric measurements. In: 17th International Symposium on High Voltage Engineering (ISH 2011), Aug 2011 in Hannover/Germany, CD-ROM Leibniz Universität Hannover, pp. 1115–1120 (2011)Google Scholar
  38. 38.
    Bossi, A.: An international survey on failures in large power transformers in service—final report of CIGRE working group 12.05. Electra 88, 22–48 (1983)Google Scholar
  39. 39.
    Stirl, T., Bauer, H.: Ein leistungsfähiges Online-Monitoring-Konzept—Basis moderner Zustandserfassung und Diagnostik von Leistungstransformatoren. ETG-Fachbericht 104 der ETG Fachtagung Diagnostik elektrischer Betriebsmittel, Sept 2006 in Kassel, Energietechnische Gesellschaft im VDE (ETG), Paper 4.29 (2006)Google Scholar
  40. 40.
    Fiber Optic Temperature Monitoring Solution for Transformer Winding Hot Spots. Brochure of opSens Company, Quebec/Canada. http://www.opsens.com. Accessed 20 Feb 2012
  41. 41.
    Werle, P.: Practical aspects of different new diagnostic methods for the condition assessment of power transformers. In: 17th International Symposium on High Voltage Engineering (ISH 2011), Aug 2011 in Hannover/Germany, CD-ROM Leibniz Universität Hannover, pp. 452–455, 2173–2176Google Scholar
  42. 42.
    Sung, C.: On-line PD (partial discharge) Monitoring of power system components. Master Thesis in Science in Technology, Aalto University, School of Electrical Engineering/Finland. Espoo 2011. http://lib.tkk.fi/Dipl/2011/urn100511.pdf. Accessed 25 Jan 2012 (2011)
  43. 43.
    Huber, R.: Betriebserfahrung mit Monitoringsystemen an Großtransformatoren. ETG Fachbericht 87 Diagnostik Elektrischer Betriebsmittel, pp. 79–82 (2002)Google Scholar
  44. 44.
    Koch, M., Raetzke, S., Tenbohlen, S.: Determination of the condition of transformer oil using dielectric response analysis. In: 17th International Symposium on High Voltage Engineering (ISH 2011), Aug 2011 in Hannover, CD-ROM Leibniz Universität Hannover/Germany, pp. 1054–1059 (2011)Google Scholar
  45. 45.
    IEC 60270 Ed. 3.0: High-voltage test techniques—partial discharge measurements (2000)Google Scholar
  46. 46.
    PDL 650 Acoustic PD Fault Localization in High-Voltage Equipment. Information brochure L234 of OMICRON May 2011, p. 8Google Scholar
  47. 47.
    Distributed Temperature Monitoring of Energy Transmission and Distribution systems. Information brochure of LIOS Technology GmbH. http://www.lios-tech.com. Accessed 15 Jan 2012
  48. 48.
    Cables Quality Control. Information brochure of OMNISENS. http://www.omnisens.ch/ditest/3452-tnm-cable-qc.php. Accessed 15 Jan 2012
  49. 49.
    Distributed Temperature Sensing (DTS)—Smart Grid. http://www.sensortran.com/. Accessed 15 Jan 2012
  50. 50.
    Krämer, SGM.: Ferrimagnetic fiber-optic sensor system for lightning detection on wind turbines. Dissertation, TU München. Berichte über Verteilte Messsysteme, Bd. 4. Nov 2008. 154 Seiten. ISBN 978-3-8322-7711-6 (2008)Google Scholar
  51. 51.
    Madding, R., Benson, R.: Detecting SF6 insulating gas leaks with an IR imaging camera. In: Electricity Today, 10–15 Nov/Dec (2007)Google Scholar
  52. 52.
    Thermal Imaging for SF6 Gas Detection. http://www.flir.com/cs/emea/en/view/?id=41660. Accessed 20 Feb 2012
  53. 53.
  54. 54.
    Riechert, U.: PD Diagnostic of Gas-Insulated Switchgear—Sensitivity Verification. ETG Fachbericht 119 des International ETG-Kongresses 2009 (Fachtagung 3+4), Oct 2009 in Düsseldorf. Paper 4.54, VDE Verlag GmbH Berlin, Offenbach pp. 477–482 (2009)Google Scholar
  55. 55.
    Bohnert, K., Gabus, P., Brändle, H.: Fiber-optic current and voltage sensors for high-voltage substations. In: Proceedings of the 16th International Conference on Optical Fiber Sensors (OFS), Oct 2003 in Nara/Japan, Technical Digest, pp. 752–754 (2003)Google Scholar
  56. 56.
    Claudi, A., Willim, C., Meyer, R., Lamprecht, J.: Monitoring of overhead lines with autonomous flying platforms. In: 17th International Symposium on High Voltage Engineering (ISH 2011), Aug 2011 in Hannover/Germany, CD-ROM Leibniz Universität Hannover, Paper G-015, pp. 2374–2277 (2011)Google Scholar
  57. 57.
    Borneburg, D.: Über den praktischen Einsatz einer UV-Kamera zur Detektion, Lokalisierung und Echtzeitdarstellung von Korona-Entladungen an elektrischen Betriebsmitteln. ETG-Fachbericht 104 der ETG Fachtagung Diagnostik elektrischer Betriebsmittel, Sept 2006 in Kassel, Energietechnische Gesellschaft im VDE (ETG), Paper 1.04 (2006)Google Scholar
  58. 58.
    Ninedorf, DA.: High-voltage electrical survey advancement. Ox Creek Energy Associates, Inc. http://www.specialcamera.com/MC/HVSurveyAdvancement.pdf. Accessed 20 Feb 2012
  59. 59.
    Cirigliano, M., Cattaneo, G., Boffi, P. et al.: Overhead power lines temperature measurements by a fiber optic Raman sensor. In: Proceedings of the 20th International Conference on Optical Fibre Sensors (OFS) SPIE-vol. 7503, p. 75034 (2009). doi:  10.1117/12.834248
  60. 60.
    Temperature and Strain Monitoring of Overhead Electrical Supply. Case Study 2006. http://www.sensornet.co.uk/module/page-240/zone-1/casestudy_id-26/case_studies_action-view_casestudy/. Accessed 20 Feb 2012
  61. 61.
    Kasprzak, W., Nadolny, Z.: Method of electric field stress measurement based on electro-optic kerr effect. In: 17th International Symposium on High Voltage Engineering (ISH 2011). August 2011 in Hannover/Germany, CD-ROM Leibniz Universität Hannover, pp. 7–10 (2011)Google Scholar
  62. 62.
    Lazarevic, Z., Radosavljevic, R., Pesic, M., Osmokrovic, P.: Application of Kerr electro-optic effect to electric field measurements in transformer oils. J. Optoelectroncis Adv. Mater. 8, 1273–1277 (2006)Google Scholar
  63. 63.
    Englert, T.J., Chowdhury, B.H., Grigsby, E.: A laboratory investigation of electro-optic Kerr effect for detection of electric transmission lines. IEEE Trans. Power Deliv. 6, 979–985 (1991)CrossRefGoogle Scholar
  64. 64.
    Jr Hebner, RE., Misakian, M.: NBSIR 77-1317 Report on Calibration of High-Voltage Pulse Measurement Systems Based on the Kerr Effect. National Bureau of Standards (USA), Sept 1977Google Scholar
  65. 65.
    Optical fiber current Sensor. Information sheet of Adamant Kogyo Co. Ltd. Japan. http://www.adamant-kogyo.com/products/current-sensor/index.html. Accessed 14 Feb 2012
  66. 66.
    Bohnert, K., Gabus, P., Brändle, H., Guggenbach, P.: Fiber-optic DC current sensor for the electro-winning industry. In: Proceedinga of the 17th International Conference on Optical Fiber Sensors (OFS-17). SPIE-vol. 5855, pp. 210–213 (2005)Google Scholar
  67. 67.
    COSI-NXCT Optical Current transformer. Broschure of Alstom. http://www.nxtphase.com/pdf/ALSTOM_COSI_NXCT.pdf. Accessed 20 Feb 2012
  68. 68.
    Willsch, M., Theune, NM., Bosselmann, T., Ecke, W., Latka, I., Höfer, B.: Distributed dynamic strain measurement in power generators using a novel fast FBG interrogation system. In: Proceedings of the 16th International Conference on Optical Fiber Sensors (OFS-16), Oct 2003 in Nara/Japan. Technical Digest ISBN 4-89114-036-4, pp. 294–297 (2003)Google Scholar
  69. 69.
    Willsch, M., Bosselmann, T., Villnow, M.: Fiber optic sensor solutions for increase of efficiency and availability of electric power generators. In: Proceedings of the 4th European Workshop on Optical Fibre Sensors (EWOFS’2010). Sept 2010 in Porto/Portugal. SPIE-vol. 7653: 765337, p. 5 (2010)Google Scholar
  70. 70.
    MPD 600 High-End Measurement and Analysis System for Partial Discharges (PD). Information brochure L192 of OMICRON. Aug 2010, p. 16Google Scholar
  71. 71.
    Muhr, M.: Developments in diagnosis of high voltage apparatus. In: Proceedings of the 15th International Symposium on High Voltage Engineering. University of Ljubljana/Slovenia, Elektroinstitut. Aug 2007. paper KS-777, pp. 33–34 (2007)Google Scholar
  72. 72.
    Far, far away—High-voltage tests that enable long-distance power transmission. (Technical Committee Affairs). News andviews from the IEC. Smart Electrification. Oct 2010. http://www.iec.ch/etech/2010/pdf/etech_2010-10_LR.pdf. Accessed 20 Feb 2012
  73. 73.
    Zuijderduin, R., Chevchenko, O., Smit, J., Aanhaanen, G., Melnik, I., Geschiere, A.: Integrating HTS components into the future transmission grid of the Netherlands. In: 17th International Symposium on High Voltage Engineering (ISH 2011) Aug 2011 in Hannover/Germany CD-ROM Leibniz Universität Hannover, paper G-025, pp. 2325–2330 (2011)Google Scholar
  74. 74.
    Plath, R.: System concept for partial discharge monitoring on HV/EHV cable systems. In: IEEE International Conference on Condition Monitoring and Diagnostics (CMD), Beijing (2006)Google Scholar
  75. 75.
    Patentschrift. Hochspannungseinrichtung und Verfahren zum Monitoring von Alterungsprozessen einer Isolierung in einer Hochspannungseinrichtung. DE 10 2010 061 607.9-35 (Habel W, Heidmann G). Anmeldetag, 28 Dec 2010Google Scholar
  76. 76.
    Patentschrift. Hochspannungsgarnitur und Verfahren zur Detektion von Teilentladungen in Hochspannungsgarnituren DE 10 2010 061 606.0-35 (Habel W, Heidmann G). Anmeldetag, 28 Dec 2010Google Scholar
  77. 77.
    Helios Distributed Acoustic Sensor. Fotech Solutions Ltd. http://www.fotechsolutions.com/. Accessed 14 Feb 2012
  78. 78.
    Willsch, M., Bosselmann, T., Flohr, P., Kull, R., Ecke, W., Latka, I., Fischer, D., Thiel, T.: Design of fiber optical high temperature sensors for gas turbine monitoring. In: Proceedings of the 20th International Conference on Optical Fiber Sensors (OFS-20), October 2009 in Edinburgh. Spie vol. 7503: 75037R-1 bis 75037R-4 (2009)Google Scholar
  79. 79.
    Latka, I., Ecke, W., Höfer, B., Habisreuther, T.: FiberBragg grating based measurement of elastic properties at cryogenic temperatures. In: SPIE Symposium Optics East, Proceedings of SPIE “Fiber Optic Sensors and Applications V” Vol. 6770 (2007). doi:  10.1117/12.735498
  80. 80.
    Cusano, A., Breglio, G., Irace, A., Consales, M., Buosciolo, A., Giordano, M., Cutolo, A., Buontempo, S., Petagna, P.: Applications of modern FOS techniques in high energy article physic detectors for the LHC at CERN. In: Proceedings of the 5th European Workshop on Structural Health Monitoring (EWSHM’10) June 2010 in Sorrento/Italy, pp. 32–44. ISBN No. 78-1-60595-024-2 (2010)Google Scholar
  81. 81.
    Gockenbach, E.: Möglichkeiten und Grenzen der Diagnostik von Isolierstoffen in elektrischen Betriebsmitteln. ETG-Fachbericht 87 der ETG Fachtagung Diagnostik elektrischer Betriebsmittel, Feb 2002 in Berlin/Germany, pp. 113–116 (2002)Google Scholar
  82. 82.
    Fischer, W.: IEEE PES Swiss Chapter—Workshop on Power Cables 14 Apr 2010 Berlin, 50Hertz Transmission, Berlin. http://www.ieee.ch/pes/downloads/10041fischerexperience50hz.pdf. Accessed 15 June 2011
  83. 83.
    Koltunowicz, W., Obralic, A., Belkov, A., Giselbrecht, D.: Continuous PD Monitoring of HV XLPE cable lines. In: Proceedings of the 8th International Conference on Insulated Power Cables (Jicable’11), June 2011 in Versailles/France. Paper B.9.1 (2011)Google Scholar
  84. 84.
  85. 85.
    Faraday effect. http://en.wikipedia.org/wiki/Faraday_effect. Accessed 20 Feb 2012
  86. 86.
    Habel, M., Vaterrodt, K., Heidmann, G., Habel, WR., et al.: Optical PD Detection in stress cones of HV cable accessories. In: Jicable Conference June 2011 in Versailles/Frankreich. Paper B 8.4 (2011)Google Scholar
  87. 87.
    FLIR Thermography—Infrared Cameras and Thermal Imagers. http://www.flir.com/thermography/americas/us/. Accessed 20 Feb 2012
  88. 88.
    Jaeger, NA.: Integrated-optic sensors for high-voltage substation applications. In: Proceedings SPIE 3489: 41 (1998). doi:  10.1117/12.323430
  89. 89.
    LeoProbe. Information sheet of Stack Electronics Co., Ltd. Japan. http://www.stack-elec.co.jp/news/leo_probe_news091116.pdf. Accessed 15 Jan 2012
  90. 90.
    Fiber-Optic Current Sensor FOCS http://www.abb.com/product/seitp322/87658a38b941842dc1256f480034c11c.aspx. Accessed 14 Feb 2012
  91. 91.
    Theune, NM., Kaufmann, M., Kaiser, J., Willsch, M., Bosselmann, T., Krämmer, P.: Fiber bragg gratings for the measurement of direct copper temperature of stator coil and bushing inside large electrical generators. In: Proceedings of the 14th International Conference on Optical Fiber Sensors (OFS-14) in Venice/Italy. SPIE-vol. 4185, pp. 202–205 (2000)Google Scholar
  92. 92.
    Theune, N.M., Willsch, M., Kaiser, J., Hertsch, H., Krämmer, P., Bosselmann, T.: Monitoring of stator coil and lead temperatures on high voltage—a possible design and protection tool for future power generators. In: Proceedings of the 16th International Conference on Optical Fiber Sensors (OFS-16), Oct 2003 in Nara/Japan. Technical Digest ISBN 4-89114-036-4, pp. 470–473 (2003)Google Scholar
  93. 93.
    Obralic, A., Koltunowicz, W., Plath, R.: PD monitoring of HV XLPE cable lines. In: ISH International Symposium on High Voltage Engineering, Cape Town/South Africa (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und –prüfungBerlinGermany
  2. 2.Institut Prüffeld für elektrische Hochleistungstechnik GmbHBerlinGermany

Personalised recommendations