Failure Analysis: Case Studies

Chapter

Abstract

Failure analysis is needed as a diagnostic tool to assess the sequence of primary, secondary and perhaps tertiary damage of different parts in a damaged system. This is a prerequisite to identify the contributing causes and the root cause for the causal failure.

Keywords

Fatigue Crack Fatigue Crack Initiation Ultrasonic Testing High Cycle Fatigue Bogie Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    German Federal Network Agency: Report on the supply disruptions in the ruled area of RWE in Münsterland on 25, Nov 2005 (2006)Google Scholar
  2. 2.
    Albermani, F., Kitipornchai, S., Chan, R.: Failure analysis of transmission towers. Eng. Fail. Anal. 16, 1922–1928 (2009)CrossRefGoogle Scholar
  3. 3.
    Rao, G.P., Lakshmanan, N., Iyer, N.R.: Investigation of transmission line tower failures. Eng. Fail. Anal. 17, 1127–1141 (2010)CrossRefGoogle Scholar
  4. 4.
    Pohlmann, H.: Schadensanalyse, Resttragfähigkeit und Sanierungskonzepte von Hochspannungs-Freileitungsmasten (1996)Google Scholar
  5. 5.
    Helms, R., Kühn, H.-D., Martin, E.: Safety against brittle fracture of structural steelwork elements with punched holes. Arch. Eisenhüttenwes. 44, 917–926 (1973)Google Scholar
  6. 6.
    Rao, R.P., Rokade, R., Mohan, S.: Analytical and experimental studies on 400 and 132 kV steel transmission poles. Eng. Fail. Anal. 18, 1018–1029 (2011)CrossRefGoogle Scholar
  7. 7.
    Moon, B.-W.B.-W., Park, J.-H., Lee, S.-K., Kim, J., Kim, T., Min, K.-W.: Performance evaluation of a transmission tower by substructure test. J. Constr. Steel Res. 65, 1–11 (2009)CrossRefGoogle Scholar
  8. 8.
    Lacalle, R., Cicero, S., Álvarez, J., Cicero, R., Madrazo, V.: On the analysis of the causes of cracking in a wind tower. Eng. Fail. Anal. 18, 1698–1710 (2011)CrossRefGoogle Scholar
  9. 9.
    Chou, J.-S., Tu, W.-T.: Failure analysis and risk management of a collapsed large wind turbine tower. Eng. Fail. Anal. 18, 295–313 (2011)CrossRefGoogle Scholar
  10. 10.
    Baer, W.: Zur Alterung von Thomasstählen. MP Mater. Testing 49, 37–47 (2007)Google Scholar
  11. 11.
    Dick, W.: Die Thomasstähle. Härterei-Technische Mitteilungen 2, 100–109 (1943)Google Scholar
  12. 12.
    Stolte, E., Heller, W.: Present state of our knowledge on ageing of steels. Part I. Underlaying principles. Stahl U. Eisen 90, 861–868 (1970)Google Scholar
  13. 13.
    Heller, W., Stolte, E.: Present state of our knowledge on ageing of steels. Part II. Effects of ageing on steels. Stahl U. Eisen 90, 909–916 (1970)Google Scholar
  14. 14.
    Felix W.: Investigation of natural and artificial ageing of general construction steels. Arch. Eisenhüttenwes. 36, 35–41 (1965)Google Scholar
  15. 15.
    Verein Deutscher Eisenhüttenleute (ed.) Werkstoffkunde Stahl, Band 1. Springer, Grundlagen (1984)Google Scholar
  16. 16.
    Dahl, W., Lenz, E.: Effect of manganese content on quench ageing and strain ageing of carbon and/or nitrogen. Arch. Eisenhüttenwes. 46, 119–125 (1975)Google Scholar
  17. 17.
    DIN EN 10002-1, Metallic materials–Tensile testing–Part 1: Method of test at ambient temperature (2001)Google Scholar
  18. 18.
    VDE 0210 Rules for the design of Overhead electrical transmission lines (1958)Google Scholar
  19. 19.
    DIN EN 50341-1: Overhead electrical lines exceeding AC 45 kV–Part 1: General requirements-Common specifications (2002)Google Scholar
  20. 20.
    Export Report of Federal Institute for Materials Research and Testing BAM: Failure Analysis on transmission towers failed in the Münsterland, BAM, Berlin (2006)Google Scholar
  21. 21.
    DIN EN 50341-3-4: Overhead electrical lines exceeding AC 45 kV–Part 3: national normative aspects (NNA) (2001)Google Scholar
  22. 22.
    VDE-AR-N 4210-3: Test and evaluation methods for determining the load capacity of structural members made of Thomas steel in steel lattice overhead line towers with nominal voltages of 110 kV and above (2011)Google Scholar
  23. 23.
    DIN EN 50341-1: Overhead electrical lines exceeding AC 45 kV–Part 1: General requirements-common specifications (2010)Google Scholar
  24. 24.
    Expert report of Federal Institute for Materials Research and Testing BAM: “Gutachten BAM-V.3/566: Schadensanalyse an der gebrochenen Radsatzwelle 2660419 der BR 403 ICE 3”.- BAM, Berlin, 2009-03-09 unpublishedGoogle Scholar
  25. 25.
    Klinger, C.,Bettge, D., Häcker, R., Heckel, T., Gohlke, D., Klingbeil D.: Failure analysis on a broken ICE3 railway axle—Interdisciplinary approach. In: Beretta, S. (ed.) Proceedings ESIS TC 24 “Railway structures” Workshop on “Fatigue Strength and Fatigue Life of Railway Axles”, Berlin, 10 Oct 2010Google Scholar
  26. 26.
  27. 27.
    ISO 4967:1998: Steel—Determination of content of non-metallic inclusions—Micrographic method using standard diagrams (1998)Google Scholar
  28. 28.
    EN 13261: Railway applications. Wheelsets and bogies. Axles product requirements, Annex A. European Committee for Standardization (CEN), Brussels, BelgiumGoogle Scholar
  29. 29.
    ISO 4967:1988 Steel—Deter¬mination of content of non-metallic inclusions—Micrographic method using standard diagramsGoogle Scholar
  30. 30.
    Murtaza, G., Akid, R.: Empirical corrosion fatigue life prediction models of a high strength steel. Eng. Fracture Mech. 67, 461–474 (2000)CrossRefGoogle Scholar
  31. 31.
    Zhang, J.M., Li, S.X., Yang, Z.G., Li, G.Y., Hui, W.J., Weng, Y.Q.: Influence of inclusion size on fatigue behaviour of high strength steels in the gigacycle fatigue regime. Int. J. Fatigue 29, 765–771 (2007)CrossRefGoogle Scholar
  32. 32.
    Liu, Y.B., Yang, Z.G., Li, Y.D., Chen, S.M., Hui, W.J. Weng, Y.Q.: Dependence of fatigue strength on inclusion size for high-strength steels in very high cycle fatigue regime. Mat. Sci. Eng. A, A517, 180–184 (2009)Google Scholar
  33. 33.
    Ma, J., Zhang, D., Han, E.-H., Ke, W.: Effects of inclusion and loading direction on the fatigue behaviour of hot rolled low carbon steel. Int. J. Fatigue 32, 1116–1125 (2010)CrossRefGoogle Scholar
  34. 34.
    Pessard, E., Morel, F., Morel, A., Bellett, D.: Modelling the role of non-metallic inclusions on the anisotropic fatigue behaviour of forged steel. Int. J. Fatigue 33, 568–577 (2011)CrossRefGoogle Scholar
  35. 35.
    Murakami, Y., Endo, T.: Effects of small defects on fatigue strength of metals. Int. J. Fatigue 1, 23–30 (1980)CrossRefGoogle Scholar
  36. 36.
    Murakami, Y., Usuki, H.: Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size. Int. J. Fatigue 11, 299–307 (1989)CrossRefGoogle Scholar
  37. 37.
    Murakami, Y., Kodama, S., Konuma, S.: Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. Int. J. Fatigue 11, 291–298 (1989)CrossRefGoogle Scholar
  38. 38.
    Murakami, Y., Endo, M.: Effects of defects, inclusions and inhomogeneities on fatigue strength. Inter. J. Fatigue 16, 163–182 (1994)CrossRefGoogle Scholar
  39. 39.
    Zhang, J.M., Zhang, J.F., Yang, Z.G., Li, G.Y., Yao, G., Li, S.X., Hui, W.J., Weng, Y.Q.: Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel. Mater. Sci. Eng. A394, 126–131 (2005)CrossRefGoogle Scholar
  40. 40.
    Wang, Q.Y., Bathias, C., Kawagoishi, N., Chen, Q.: Effect of inclusion on subsurface crack initiation an gigacycle fatigue strength. Int. J. Fatigue 24, 1269–1274 (2002)CrossRefGoogle Scholar
  41. 41.
    Ekengren, J., Kazymyrovych, V., Burman, C., Bergström, J.: Relating gigacycle fatigue to other methods in evaluating the inclusion distribution of a H13 tool steel. Fourth Int. Conf. Very High Cycle Fatig. 4, 45–50 (2007)Google Scholar
  42. 42.
    Murakami, Y.: Effects of non-metallic inclusions on fatigue strength. In: Murakami, Y. (ed.) Metal Fatigue: Effects of Small Defects and Non-Metallic Inclusions, pp. 75–127. Elsevier, Amsterdam (2002). (Chapter 6)Google Scholar
  43. 43.
    Sakai, T.: Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. Fourth Int. Conf. Very High Cycle Fatig. 4, 3–12 (2007)Google Scholar
  44. 44.
    Yang, Z.G., Zhang, J.M., Li, S.X., Li, G.Y., Wang, Q.Y., Hui, W.J., Weng, Y.Q.: On the critical inclusion size of high strength steels under ultra-high cycle fatigue, Mater. Sci. Eng. A427, 167–174 (2006)Google Scholar
  45. 45.
    Yang, Z.G., Zhanga, J.M., Lia, S.X., Lia, G.Y., Wanga, Q.Y., Huib, W.J., Weng, Y.Q.: The fatigue behaviours of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime. Acta Mater. 52, 5235–5241 (2004)CrossRefGoogle Scholar
  46. 46.
    Zerbst et al.: Safe life and damage tolerance aspects of railway axles—A review. EFM 2012 paper to be publishedGoogle Scholar
  47. 47.
    Lange, G.: Technische Schadensfälle, 5. Wiley VCH, Auflage (2001)Google Scholar
  48. 48.
    Erscheinungsformen von Rissen und Brüchen metallischer Werkstoffe, Verlag Stahleisen, 1996Google Scholar
  49. 49.
    Bargel, H.-J., Schulze,G.: Werkstoffkunde.- Berlin, Schroedel, 1978, S. 359–360 basierend auf: Wohler, H.: Prüfbericht 1.2/11323, Schwingbruch einer Kurbelwelle aufgrund nichtmetallischer Einschlüsse.- BAM-Berlin 1977 (unveröffentlicht)Google Scholar
  50. 50.
    Gohlke, D., Behrendt, B., Matthies, K., DiIorio, I.: Lösungsansätze für die Bewertung kleinster Fehlstellen in Superlegierungen.–DGZfP-Jahrestagung 1999—Celle, 10.-12.Mai 1999, Berichtsband Nr. 86, Band 2, Seite 599–613Google Scholar
  51. 51.
    Matthies, K., Ernst, H., Gieschler, W.: Bestimmung des mikroskopischen Reinheitsgrades von Stählen mit Ultraschall, Berichtsband 80 (CD) der DGZFP-Jahrestagung 2002, 6–8. Mai 2002 in WeimarGoogle Scholar
  52. 52.
    Klinger, C., Bettge, D., Heckel, T.: Outcome of the cologne accident investigation. Presentation on: WOALXIM Kick off meeting TWI LIMITED Granta Park, Great Abington CAMBRIDGE, UNITED KINGDOM, 22 Nov 2010Google Scholar
  53. 53.
    Zerbst, U., Beretta, S., Klinger, C., Klingbeil, D.: Structural assessment of railway axles—A critical review.- EFA 2012 paper to be published (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.BAM, Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations