Advertisement

Sub-Surface Microstructural Analysis

  • Werner Österle
Chapter

Abstract

Many performance properties of devices or interacting machine parts are related to superficial layers which often show completely different or at least modified microstructures compared to the bulk materials. A quasi non-destructive technique will be described which enables us to obtain detailed information of a material’s state at a certain site of interest down to a depth of 10 μm from the surface with nanometre or even atomistic resolution.

Keywords

Select Area Electron Diffraction Solid Lubricant Diamond Coating Incipient Melting Nanocrystalline Diamond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Acronyms

a-C:H

Hydrogenated amorphous carbon

AES

Auger electron spectroscopy

COF

Coefficient of friction

CVD

Chemical vapour deposition

EBSD

Electron back scattering diffraction

EDS

Energy dispersive X-ray spectroscopy

EELS

Electron energy loss spectroscopy

EF-TEM

Energy-filtered transmission electron microscopy

EMRP

European Metrology Research Program

FIB

Focused ion beam

HAADF

High-angle annular dark field

HR-TEM

High-resolution transmission electron microscopy

IB-CVD

Ion-beam-induced chemical vapour deposition

LM

Light optical microscopy

MCA

Movable cellular automata

MML

Mechanically mixed layer

PVD

Physical vapour deposition

SAED

Selected area electron diffraction

SEM

Scanning electron microscopy

STEM

Scanning transmission electron microscopy

ta-C

tetragonal amorphous carbon

TEM

Transmission electron spectroscopy

XPS

X-ray photoelectron spectroscopy

Z

Atomic number

ZIM

Government funding of small- and medium-sized enterprises (Zentrales Investitionsprogramm Mittelstand)

Notes

Acknowledgments

The examples shown in our case studies refer to funded research projects listed here in the order of appearance in the text: OS77/13-2 (German Research Foundation), ZIM-DiaKun (Federal Ministry of Commerce), AiF-15983 BG (Federal Ministry of Commerce), OS77/14-1 (German Research Foundation), Siemens AG Berlin, UHPC (BAM Innovationsoffensive 2008).

Furthermore, technical assistance from the following colleagues is gratefully acknowledged: Illona Dörfel (TEM), Wolfgang Gesatzke (FIB), Claudia Prietzel (TEM), Romeo Saliwan Neumann (SEM) and Heidi Rooch (FIB).

References

  1. 1.
    Joyce, T.J.: Examination of failed ex vivo metal-on-metal metatarsophalangeal prosthesis and comparison with theoretically determined lubrication regimes. Wear 263, 1050–1054 (2007)CrossRefGoogle Scholar
  2. 2.
    Österle, W., Djahanbakhsh, M., Hartelt, M., Wäsche, R.: Reasons for inferior performance of ceramic on a-C:H-coated Ti-6Al-4 V in hip simulator testing compared to ball on flat reciprocating sliding tests. Wear 265, 1727–1733 (2008)CrossRefGoogle Scholar
  3. 3.
    Falub, C.V., Thorwarth, G., Affolter, C., Müller, U., Voisard, C., Hauert, R.: A quantitative in vitro method to predict the adhesion lifetime of diamond-like carbon thin films on biomedical implants. Acta Biomater. 5, 3086–3097 (2009)CrossRefGoogle Scholar
  4. 4.
    Kanada, K., Takehana, S., Yoshida, S., Watanabe, R., Takano, S., Ando, H., Shimakura, F.: Application of diamond-coated cutting tools. Surf. Coat. Technol. 73, 115–120 (1995)CrossRefGoogle Scholar
  5. 5.
    Haubner, R., Lux, B.: On the formation of diamond coatings on WC/Co hard metal tools. Int. J. Refract. Met. Hard Mater. 14, 111–118 (1996)CrossRefGoogle Scholar
  6. 6.
    Zhang, Z.M., He, X.C., Shen, H.S., Sun, F.H., Chen, M., Wan, Y.Z.: Pre-treatment for diamond coatings on free-shape WC-Co tools. Diam. Relat. Mater. 9, 1749–1752 (2000)CrossRefGoogle Scholar
  7. 7.
    Xu, Z.Q., Lev, L., Lukitsch, M., Kumar, A.: Effects of surface pretreatments on the deposition of adherent diamond coatings on cemented tungsten carbide substrates. Diam. Relat. Mater. 16, 461–466 (2007)CrossRefGoogle Scholar
  8. 8.
    Tang, Y., Li, Y.S., Yang, Q., Hirose, A.: Study of carbide-forming element interlayers for diamond nucleation and growth on silicon and WC-Co substrates. Thin Solid Films 519, 1606–1610 (2010)CrossRefGoogle Scholar
  9. 9.
    Alan, M., Peebles, D.E., Tallant, D.R.: Diamond deposition onto WC-6%Co cutting tool material: coating structure and interfacial bond strength. Thin Solid Films 300, 164–170 (1997)CrossRefGoogle Scholar
  10. 10.
    Liu, X., Klauser, F., Memmel, N., Bertel, E., Pichler, T., Knupfer, M., Kromka, A., Steinmüller-Nethl, D.: Spectroscopic studies of nanocrystalline diamond materials. Diam Relat Mater. 16, 1463–1470 (2007)CrossRefGoogle Scholar
  11. 11.
    Almeida, F.A., Carrapichano, J.M., Fernandes, A.J.S., Sacramento, J., Silva, R.F., Oliveira, F.J.: Nanocrystalline CVD diamond coatings for drilling of WC-Co parts. Int.J.Refract.Met. Hard Mater. 29, 618–622 (2011). doi:  10.1016/j.ijrmhm.2011.04.008
  12. 12.
    Raghuveer, M.S., Yoganand, S.N., Jagannadham, K., Lemaster, R.L., Bailey, J.: Improved CVD diamond coatings on WC-Co tool substrates. Wear 253, 1195–1206 (2002)CrossRefGoogle Scholar
  13. 13.
    Alberdi, A., Hatto, P., Diaz, B., Csillag, S.: Tribological behaviour of nanocomposite coatings based on fullerene-like structures. Vacuum 85, 1087–1092 (2011)CrossRefGoogle Scholar
  14. 14.
    Jacobson, S., Hogmark, S.: Tribofilms-On the crucial importance of tribologically induced surface modifications. In: Niklas, G.K (ed.), Recent Developments in Wear Prevention, Friction and Lubrication, pp. 197–225. Research Signpost, Kerala (2010)Google Scholar
  15. 15.
    Österle, W., Dmitriev, A.I.: Functionality of conventional brake friction materials-Perceptions from findings observed at different length scales. Wear 271, 2198–2207 (2011). doi:  10.1016/j.wear.2010.11.035
  16. 16.
    Österle, W., Prietzel, C., Dmitriev, A.I.: Investigation of surface film nanostructure and assessment of its impact on friction force stabilization during automotive braking. Intern. J. Mater. Res. 101, 669–675 (2010)CrossRefGoogle Scholar
  17. 17.
    Dmitriev, A.I., Österle, W.: Modelling of brake pad-disc interface with emphasis to dynamics and deformation of structures. Tribology Intern. 43, 719–727 (2010)CrossRefGoogle Scholar
  18. 18.
    Österle, W., Kloß, H., Urban, I., Dmitriev, A.I.: Towards a better understanding of brake friction materials. Wear 263, 1189–1201 (2007)CrossRefGoogle Scholar
  19. 19.
    Österle, W., Dmitriev, A.I., Kloß H.: Possible impacts of third body nanostructure on the friction performance during dry sliding determined by computer simulation. Tribology International 48, 128–136 (2012). doi: 10.1016/j.triboint.2011.11.018
  20. 20.
    Plaut, R.L., Herrera, C., Escriba, D.M., Rios, P.R., Padilha, A.F.: A short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance. Mater Res 10(4), 453–460 (2007)CrossRefGoogle Scholar
  21. 21.
    Lehmann, C., Fontana, P., Müller, U., Österle, W., Meng, B.: Influence of mineral additions on the phase composition in autoclaved ultra-high performance concrete (UHPC). In: Proceedings of 13th International Congress on the Chemistry of Cement (ICCC 2011), 03–08 July 2011Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und—prüfungBerlinGermany

Personalised recommendations