Surface Chemical Analysis at the Micro- and NanoScale

Chapter

Abstract

This chapter describes relevant methods of micro- and nanosurface chemical analysis used in technical diagnostics. Informative case studies in diagnostics applied in a wide range of industrial technology are presented, too.

Keywords

Auger Electron Auger Electron Spectroscopy Dielectric Barrier Discharge Auger Transition Technical Diagnostics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge discussions and case study contributions by Dipl.-Ing. F. Straub, Dr. H. Min, Dr. T. Gross and Dipl.-Phys. T. Wirth (all BAM).

References

  1. 1.
    Heinrich, K.V.J.: Electron beam x-ray microanalysis. Van Nostrand-Reinhold, New York (1981)Google Scholar
  2. 2.
    Briggs, D., Grant, J.T. (eds.): Surface Analysis. IM Publications, UK (2003). ISBN 1-901019-04-7Google Scholar
  3. 3.
    Unger, W.E.S.: Surface analysis: auger electron spectroscopy. In: Worsfold, P.J. (ed.) The Encyclopedia of Analytical Science, 2nd edn., pp. 466–474. Alan Townsend and Colin F. Poole, Elsevier (2005). ISBN: 978-0-12-369397-6Google Scholar
  4. 4.
    Briggs, D., Seah, M.P. (eds.): Practical surface analysis. In: Ion and Neutral Spectroscopy, vol 2, Wiley, Chichester (1992). ISBN 0-471-92082-7Google Scholar
  5. 5.
    Riviere, J.C., Myhra, S. (eds.): Handbook of Surface and Interface Analysis—Methods for Problem-Solving, 2nd edn. CRC Press Tayler & Francis Group. Boca Raton (2009). ISBN 978-0-8493-7558-3Google Scholar
  6. 6.
    Business Plans of ISO/TC 201 “Surface chemical analysis” and ISO/TC202 “Microbeam Analysis”, www.iso.org
  7. 7.
    Seah, M.P., Dench, W.A.: Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979)CrossRefGoogle Scholar
  8. 8.
    Jenkins, R., Manne, R., Robin, R., Senemaud, C.: Nomenclature system for x-ray spectroscopy. Pure Appl. Chem. 63(5), 735–746 (1991)CrossRefGoogle Scholar
  9. 9.
    Ritchie, N.W.M., Davis, J., Newbury, D.E.: Energy dispersive spectrometry at wavelength precision. Microsc. Microanal. 17(Suppl 2), 556–557 (2011)CrossRefGoogle Scholar
  10. 10.
    Newbury, D.E., Swyt, C.R., Myklebust, R.L.: “Standardless” quantitative electron probe microanalysis with energy-dispersive x-ray spectrometry: is it worth the risk? Anal. Chem. 67, 1866–1871 (1995)CrossRefGoogle Scholar
  11. 11.
    Alvisi, M., Blome, M., Griepentrog, M., Hodoroaba, V.-D., Karduck, P., Mostert, M., Nacucchi, M., Procop, M., Rohde, M., Scholze, F., Statham, P., Terborg, R., Thiot, J.F.: The determination of the efficiency of energy dispersive X-ray spectrometers by a new reference material. Microsc. Microanal. 12(5), 406–415 (2006)CrossRefGoogle Scholar
  12. 12.
    Bailly, A., Renault, O., Barrett, N., Desrues, T., Mariolle, D., Zagonel, L.F., Escher, M.: Aspects of lateral resolution in energy-filtered core level photoelectron emission microscopy. J. Phys. Condens. Matter 21, 314002 (2009). doi: 10.1088/0953-8984/21/31/314002
  13. 13.
    Yu, B.-Y., Chen, Y.-Y., Wang, W.-B., et al.: Depth profiling of organic films with x-ray photoelectron spectroscopy using C(60)(+) and Ar(+) co-sputtering. Anal. Chem., 80, 3412–3415 (2008).doi:  10.1021/ac702626n Google Scholar
  14. 14.
    Ninomiya, S., Ichiki, K., Yamada, H., et al.: Precise and fast secondary ion mass spectrometry depth profiling of polymer materials with large Ar cluster ion beams. Rapid Commun. Mass Spectrom. 23, 1601–1606 (2009). doi:  10.1002/rcm.4046
  15. 15.
    Rabbani, S., Barber, A.M., Fletcher, J.S., et al.: TOF-SIMS with Argon gas cluster ion beams: a comparison with C(60)(+). Anal. Chem. 83, 3793–3800 (2011). doi:  10.1021/ac200288v Google Scholar
  16. 16.
    Gross, T., Treu, D., Unger, W.: Standard operating procedure (SOP) for the quantitative determination of organic silicon compounds at the surface of elastomeric sealants. Appl. Surf. Sci. 179, 109–112 (2001)CrossRefGoogle Scholar
  17. 17.
    Oran, U., Ünveren, E., Wirth, T., Unger, W.E.S.: Polydimethylsiloxane (PDMS) contamination of polystyrene (PS) oligomers samples: a comparison of time-of-flight static secondary ion mass spectrometry (TOF-SSIMS) and X-ray photoelectron spectroscopy (XPS) results. Appl. Surf. Sci. 227, 318–324 (2004)CrossRefGoogle Scholar
  18. 18.
    Min, H., Girard-Lauriault, P.-L., Gross, T., Lippitz, A., Dietrich, P., Unger, W.E.S.: Ambient-ageing processes in amine self-assembled monolayers on microarray slides as studied by ToF-SIMS with principal component analysis, XPS, and NEXAFS spectroscopy. Anal. Bioanal. Chem. 403(2), 613–623 (2012). doi: 10.1007/s00216-012-5862-5
  19. 19.
    zu Köcker, G.M., Gross, T., Santner, E.: Influence of the testing parameters on the tribological behavior of self-mated PVD-coatings. Wear 179, 5–10 (1994)Google Scholar
  20. 20.
    Shimizu, K., Habazaki, H., Skeldon, P., Thompson, G.E.: Radiofrequency GDOES: a powerful technique for depth profiling analysis of thin films. Surf. Interface Anal. 35, 564–574 (2003). doi: 10.1002/sia.1572 CrossRefGoogle Scholar
  21. 21.
    Hinze, A., Klages, C.P., Zänker, A., Thomas, M., Wirth, T., Unger, W.E.S.: ToF-SIMS imaging of DBD-plasma-printed microspots on BOPP substrates, Plasma Processes Polym. 5 460–470 (2008). doi:  10.1002/ppap.200700138
  22. 22.
    Straub, F., Wirth, T., Hertwig, A., Hodoroaba, V.-D., Unger, W.E.S., Böllinghaus, T.: Imaging the microstructure of duplex stainless steel samples with TOF-SIMS. Surf. Interface Anal. 42, 739–742 (2010). doi: 10.1002/sia.3385 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1. BAM Bundesanstalt für Materialforschung und–prüfungBerlinGermany

Personalised recommendations