Air Traffic Control

Chapter

Abstract

Air traffic control (ATC) is a service provided by ground-based controllers who ensure the safe, orderly and expeditious flow of traffic on the airways and at airports. They control and supervise aircraft departing and landing, as well as during flight by instructing pilots to fly at assigned altitudes and on defined routes.

Keywords

Paper Strip Flight Level Approach Controller Flight Plan Radar Screen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahlstrom, V., & Kudrick, B. (2007). Human factors criteria for displays: A human factors design standard – Update of Chapter 5. Atlantic City: Federal Aviation Administration William J. Hughes Technical Centre.Google Scholar
  2. Ahlstrom, V., & Longo, K. (2001). Computer–human interface guidelines: A revision to Chapter 8 of the human factors design guide. Atlantic City: Federal Aviation Administration William J. Hughes Technical Centre.Google Scholar
  3. Ahlstrom, V., & Longo, K. (2003). Human factors design standard for acquisition of commercial off-the-shelf subsystems, non-developmental items, and developmental systems. Atlantic City: Federal Aviation Administration William J. Hughes Technical Centre.Google Scholar
  4. Albright, C. A., et al. (1995). Controlling traffic without flight progress strips: Compensation, workload, performance, and opinion. Air Traffic Control Quarterly, 2(3), 229–248.Google Scholar
  5. Bachmann, P. (2005). Flugsicherung in Deutschland. Stuttgart: Motorbuch Verlag.Google Scholar
  6. Bergner, J., König, C., Hofmann, T., & Ebert, H. (2009). An integrated arrival and departure display for the tower controller. 9th AIAA aviation technology, integration and operations conference (ATIO), Hilton Head. 21–23 Sept 2009.Google Scholar
  7. Billings, C. E. (1996). Human-centered aviation automation: Principles and guidelines. Moffett Field: NASA Ames Research Centre.Google Scholar
  8. Billings, C. E. (1997). Aviation automation. Mahwah: Lawrence Erlbaum.Google Scholar
  9. Bork, O., et al. (2007). P1/ATCAS trainings manual. Langen: DFS Deutsche Flugsicherung GmbH.Google Scholar
  10. Bork, O., et al. (2010). ATM system guide lower airspace. Langen: DFS Deutsche Flugsicherung GmbH.Google Scholar
  11. Cook, A. (2007). European air traffic management. Aldershot: Ashgate.Google Scholar
  12. Deutsche Flugsicherung. (1999). Betriebsanordnung FMF-BC – Eintragungen auf den Kontrollstreifen für das ACC Frankfurt. Langen: DFS Deutsche Flugsicherung GmbH.Google Scholar
  13. Deutsche Flugsicherung. (2006a). Betriebsanordnung 50/2006 Änderung der Sektor – und Rollenbezeichnungen. München: DFS Deutsche Flugsicherung GmbH Niederlassung Süd Centre München.Google Scholar
  14. Deutsche Flugsicherung. (2006b). Betriebsanordnung 75/2006 operational order EBG APP, NORD, and SUED. München: DFS Deutsche Flugsicherung GmbH Niederlassung Süd Centre München.Google Scholar
  15. Deutsche Flugsicherung. (2007). Betriebsanweisung Flugverkehrskontrolle. Langen: DFS Deutsche Flugsicherung GmbH.Google Scholar
  16. Deutsche Flugsicherung. (2009). Benutzerhandbuch Betrieb L-ANBLF. Langen: DFS Deutsche Flugsicherung GmbH.Google Scholar
  17. Deutsche Flugsicherung. (2010a). Controller working position (CWP) system user manual (SUM) for P1/ATCAS (Air Traffic Control Automation System) release 2.8. Deutsche Flugsicherung GmbH Systemhaus/SoftwareEntwicklung Main ATS Components, Langen.Google Scholar
  18. Deutsche Flugsicherung. (2010b). Manual of operations air traffic services. Langen: DFS Deutsche Flugsicherung GmbH.Google Scholar
  19. Deutsche Flugsicherung. (2010c). P1/VAFORIT user manual. Karlsruhe: DFS Deutsche Flugsicherung GmbH, Upper area control centre.Google Scholar
  20. Deutsche Flugsicherung. (2010d). Paperless strip system system user manual for P1/ATCAS release 2.8. Deutsche Flugsicherung GmbH Systemhaus/Software Entwicklung Main ATS Components, Langen.Google Scholar
  21. Deutsche Flugsicherung. (2010e). System user manual Munich for AMAN release 3.1. Deutsche Flugsicherung GmbH Systemhaus/Software Entwicklung Centresysteme, Langen.Google Scholar
  22. Dewitz, W., et al. (1987). Grundsatzuntersuchungen zur Darstellung von Flugverlaufsdaten auf elektronischen Datensichtgeräten unter Nutzung des Experimental Work-position Simulators (EWS). Frankfurt/M: Bundesanstalt für Flugsicherung – Erprobungsstelle.Google Scholar
  23. Doble, N. A. (2003). Design and evaluation of a portable electronic flight progress strip system. Cambridge: Massachusetts Institute of Technology.Google Scholar
  24. Doble, N. A., & Hansman, R. J. (2003). Preliminary design and evaluation of portable electronic flight progress strips. Cambridge: Massachusetts Institute of Technology.Google Scholar
  25. Durso, F. T., et al. (1998). Reduced flight progress strips in en route ATC mixed environments. Washington, DC: Office of Aviation Medicine.Google Scholar
  26. Durso, F. T., et al. (2004). The use of flight progress strips while working live traffic: Frequencies, importance, and perceived benefits. Human factors. The Journal of the Human Factors and Ergonomics, 46(1), 32–49.CrossRefGoogle Scholar
  27. Edwards, M. B., et al. (1995). The role of flight progress strips in en route air traffic control: A time-series analysis. International Journal of Human Computer Studies, 43, 1–13.CrossRefGoogle Scholar
  28. Eggemeier, T. F., Shingledecker, C. A., & Crabtree, M. S. (1985). Workload measurement in system design and evaluation. In Proceedings of the human factors society – 29th annual meeting. Baltimore, Maryland September 29-October 3.Google Scholar
  29. Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1), 32–64.CrossRefGoogle Scholar
  30. Endsley, M. R., & Kiris, E. O. (1995). The out-of-the-loop performance problem and level of control in automation. Human Factors, 37(2), 381–394.CrossRefGoogle Scholar
  31. Eurocontrol. (1998). Eurocontrol EATCHIP phase III HMI catalogue. Brüssel: Eurocontrol HQ.Google Scholar
  32. Eurocontrol. (2006). A human–machine interface for en route air traffic. Brétigny-sur-Orge: Eurocontrol Experimental Centre.Google Scholar
  33. Fecker, A. (2001). Fluglotsen. München: GeraMond.Google Scholar
  34. Federal Aviation Administration. (2010). Air traffic control. Washington, DC: U.S. Department of Transportation.Google Scholar
  35. Federal Aviation Administration. (2011a). Aeronautical information manual. Washington, DC: U.S. Department of Transportation.Google Scholar
  36. Federal Aviation Administration. (2011b). Aeronautical information publication United States of America. Washington, DC: U.S. Department of Transportation.Google Scholar
  37. Fitts, P. M. (1951). Human engineering for an effective air-navigation and traffic-control system. Washington, DC: National Research Council, Division of Anthropology and Psychology, Committee on Aviation Psychology.Google Scholar
  38. Francke, S. (1997). 4D-Planer. DLR, Inst. für Flugführung, Braunschweig.Google Scholar
  39. Fuchs, R., et al. (1980). Einsatz von elektronischen Datensichtgeräten zur Ablösung von gedruckten Kontrollstreifen. Frankfurt/M: Bundesanstalt für Flugsicherung – Erprobungsstelle.Google Scholar
  40. Harper, R. R., Hughes, J. A., & Shapiro, D. Z. (1989). The functionality of flight strips in ATC work. Lancaster: Lancaster Sociotechnics Group, Department of Sociology, Lancaster University.Google Scholar
  41. Hopkin, V. D. (1995). Human factors in air traffic control. London: Taylor and Francis.Google Scholar
  42. ICAO. (1993). Human factors digest N°8, human factors in air traffic control. Montréal: International Civil Aviation Organization.Google Scholar
  43. ICAO. (2000). Human factors guidelines for air traffic management systems. Montréal: International Civil Aviation Organization.Google Scholar
  44. ICAO. (2001). Air traffic management. Montréal: International Civil Aviation Organization.Google Scholar
  45. Isaac, A. R., & Ruitenberg, B. (1999). Air traffic control: Human performance factors. Aldershot: Ashgate.Google Scholar
  46. Jackson, A. (1989). The functionality of flight strips: Royal signals and radar establishment. Great Malvern.Google Scholar
  47. Jackson, A. (2002). Core requirements for ATM working positions: An overview of the project activity. Brétigny: Eurocontrol Experimental Centre.Google Scholar
  48. Jackson, A., & Pichancourt, I. (1995). A human–machine interface reference system for enroute air traffic control. Brétigny: Eurocontrol Experimental Centre.Google Scholar
  49. Kirwan, B. et al. (1997). Human factors in the ATM system design life cycle. In FAA/Eurocontrol ATM R&D Seminar. Paris: FAA/Eurocontrol. 16–20 June 1997.Google Scholar
  50. Mackay, W. E. (1999). Is paper safer? The role of paper flight strips in air traffic control. ACM Transactions on Computer–Human Interaction, 6(4), 311–340.MathSciNetCrossRefGoogle Scholar
  51. Manning, C. A. et al. (2003). Age, flight strip usage preferences, and strip marking. In Proceedings of the 12th international symposium on aviation psychology, Dayton.Google Scholar
  52. Médini, L., & Mackay, W. E. (1998). An augmented stripboard for air traffic control. Centre d'Études de la Navigation Aérienne, Orly Aérogares.Google Scholar
  53. Mensen, H. (2004). Moderne Flugsicherung. Berlin: Springer.Google Scholar
  54. Menuet, L., & Stevns, P. (1999). Denmark-Sweden interface (DSI) human–machine interface specification: ACC/APP. Brétigny: Eurocontrol Experimental Centre.Google Scholar
  55. Mertz, C., Chatty, S., & Vinot, J. (2000). Pushing the limits of ATC user interface design beyond S&M interaction: The DigiStrips experience. 3rd USA/Europe air traffic management R&D seminar, CENA, Neapel.Google Scholar
  56. Mertz, C., & Vinot, J. (1999). Touch input screens and animations: More efficient and humanized computer interactions for ATC(O). 10th international symposium on aviation psychology, CENA, Columbus.Google Scholar
  57. Nolan, M. S. (2004). Fundamentals of air traffic control. Belmont: Thomson Brooks/Cole.Google Scholar
  58. Pletschacher, P., Bockstahler, B., & Fischbach, W. (2003). Eine Zeitreise. Oberhaching: Aviatic Verlag GmbH.Google Scholar
  59. Safety Regulation Group. (2010). Manual of air traffic services. Civil aviation authority. West Sussex: Gatwick Airport South.Google Scholar
  60. Siemens, A. G. (1991). DEPCOS handbuch Frankfurt/Main. Frankfurt/M: Siemens AG.Google Scholar
  61. Smith, M. A. (1962). Progress with SATCO. Flight International, 2799(82).Google Scholar
  62. Smolensky, M. W., & Stein, E. S. (1998). Human factors in air traffic control. San Diego: Academic.Google Scholar
  63. Stein, E. S. (1985). Air traffic controller workload: An examination of workload probe. Atlantic City: Federal Aviation Administration Technical Centre.Google Scholar
  64. Sudarshan, H. V. (2003). Seamless sky. Aldershot: Ashgate.Google Scholar
  65. Truitt, T. R., et al. (2000a). Reduced posting and marking of flight progress strips for en route air traffic control. Washington, DC: Office of Aviation Medicine.Google Scholar
  66. Truitt, T. R., et al. (2000b). Test of an optional strip posting and marking procedure. Air Traffic Control Quarterly, 8(2), 131–154.Google Scholar
  67. von Villiez, H. (1979). Stand und Entwicklung der Automatisierung als Hilfsmittel zur Sicherung des Luftverkehrs. Brüssel: Eurocontrol.Google Scholar
  68. Vortac, O. U., et al. (1992a). En route air traffic controllers’ use of flight progress strips: A graph-theoretic analysis. Washington, DC: Federal Aviation Administration.Google Scholar
  69. Vortac, O. U., et al. (1992b). En route air traffic controllers’ use of flight progress strips: A graph-theoretic analysis. The International Journal of Aviation Psychology, 3(4).Google Scholar
  70. Wickens, C. D. (1992). Engineering psychology and human performance. New York: HarperCollins.Google Scholar
  71. Wickens, C. D. (1997). Flight to the future. Washington, DC: National Academies Press.Google Scholar
  72. Wickens, C. D. (1998). The future of air traffic control. Washington, DC: National Academies Press.Google Scholar
  73. Wiener, E. L., & Nagel, D. C. (1989). Human factors in aviation. San Diego: Academic.Google Scholar
  74. Yuditsky, T. et al. (2002). Application of colour to reduce complexity in air traffic control. Atlantic City: Federal Aviation Administration, William J. Hughes Technical Centre.Google Scholar
  75. Zingale, C., Gromelski, S., & Stein, E. S. (1992). Preliminary studies of planning and flight strip use as air traffic controller memory aids. Atlantic City: Federal Aviation Administration Technical Centre.Google Scholar
  76. Zingale, C., et al. (1993). Influence of individual experience and flight strips influence of individual experience and flight strips. Atlantic City: Federal Aviation Administration Technical Centre.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DFS Deutsche Flugsicherung GmbHLangenGermany

Personalised recommendations