Military Aviation

  • Robert Hierl
  • Harald Neujahr
  • Peter Sandl


In today’s military aviation, information management is the crucial factor for mission success. Proper decision-making depends not only on the amount and quality of data, but to the same degree on the consideration of its context and the combination with other data. Without the appropriate information the pilot of a combat or surveillance aircraft or the commander of an unmanned aerial vehicle (UAV) is unable to adequately fulfil his mission.


Unmanned Aerial Vehicle Data Link Situation Awareness Aircraft System Fighter Aircraft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. US Air Force. (2009). United States air force unmanned aircraft systems flight plan 2009–2047. Accessed 31 July 2011.
  2. Alberts, D. S., Garstka, J. J., Hayes, R. E., & Signori, D. A. (2001). Understanding information age warfare. Library of congress cataloging-in-publication data. Accessed 27 June 2011.
  3. Asaf Degani and Michael Heymann (2002). Formal Verfication of Human-Automation InteractionGoogle Scholar
  4. Ayton, M. (2011). Lockheed Martin F-35 lightning II. Air International, 5, 37–80.Google Scholar
  5. Becker, S., Neujahr, H., Bapst, U., & Sandl, P. (2008). Holographic display – HOLDIS. In M. Grandt & A. Bauch (Eds.), Beiträge der Ergonomie zur Mensch-system-integration (pp. 319–324). Bonn: DGLR.Google Scholar
  6. Billings, C. E. (1997). Aviation automation: The search for a human-centered approach. Mahwah: Lawrence Erlbaum.Google Scholar
  7. Boucek, G., de Reus, A., Farrell, P., Goossens, A., Graeber, D., Kovacs, B., Langhorne, A., Reischel, K., Richardson, C., Roessingh, J., Smith, G., Svenmarck, P., Tvaryanas, M., & van Sijll, M. (2007). System of systems. In Uninhabited military vehicles (UMVs): Human factors issues in augmenting the force. RTO-TR-HFM-078. Neuilly-sur-Seine: Research & Technology Organisation. ISBN 978-92-837-0060-9.Google Scholar
  8. Buro, T., & Neujahr, H. (2007). Einsatz der simulation bei der integration von Sensoren in unbemannte systeme. In M. Grandt & A. Bauch (Eds.), Simulationsgestützte systeme. Bonn: DGLR.Google Scholar
  9. Carlson, B. J. (2001). Past UAV program failures and implications for current UAV programs (Air University Rep. No. 037/2001-2004). Maxwell Air Force Base: Air Command and Staff College.Google Scholar
  10. Eichinger, A. (2011). Bewertung von Benutzerschnittstellen für Cockpits hochagiler Flugzeuge. Dissertation, Universität Regensburg.Google Scholar
  11. Endsley, M. R. (1999). Situation awareness in aviation systems. In D. J. Garland, J. A. Wise, & V. D. Hopkins (Eds.), Handbook of aviation human factors. Mahwah: Lawrence Erlbaum.Google Scholar
  12. Endsley, M. R., & Kiris, E. O. (1995). The out-of-the-loop performance problem and level of control in automation. Human Factors, 37(2), 381–394.CrossRefGoogle Scholar
  13. FAA. (2004). Title 14, Part 91 General operating and flight rules. Section 91.113(b). Federal Aviation Regulations. Accessed 31 July 2011.
  14. Goodrich, M. A., & Boer, E. R. (2003). Model-based human-centered task automation: A case study in acc system design. IEEE Transactions on Systems, Man and Cybernetics, Part A, Systems and Humans, 33(3), 325–336.CrossRefGoogle Scholar
  15. Harris, W. C., Hancock, P. A., Arthur, E. J., & Caird, J. K. (1995). Performance, workload, and fatigue changes associated with automation. International Journal of Aviation Psychology, 5(2), 169–185.CrossRefGoogle Scholar
  16. Hoc, J. M. (2000). From human–machine integration to human–machine cooperation. Ergonomics, 43(7), 833–843.CrossRefGoogle Scholar
  17. Hollister, M. W. (Ed.), Adam, E. C., McRuer, D., Schmit, V., Simon, B., van de Graaff, R., Martin, W., Reinecke, M., Seifert, R., Swartz, W., Wünnenberg, H., & Urlings, P. (1986). Improved guidance and control automation at the man-machine interface. AGARD-AR-228. ISBN: 92-835-1537-4.Google Scholar
  18. Joint Chiefs of Staff. (2010). Dictionary of military and associated terms US-Department of Defense. Accessed 16 July 2011.
  19. Jukes, M. (2003). Aircraft display systems. Progress in astronautics and aeronautics 204.Google Scholar
  20. Kaber, D. B., Riley, J. M., Tan, K. W., & Endsley, M. R. (2001). On the design of adaptive automation for complex systems. International Journal of Cognitive Ergonomics, 5(1), 37–57.CrossRefGoogle Scholar
  21. Kellerer, J. P. (2010). Untersuchung zur Auswahl von Eingabeelementen für Großflächendisplays in Flugzeugcockpits. Dissertation, TU Darmstadt.Google Scholar
  22. Kellerer, J. P., Eichinger, A., Klingauf, U., & Sandl, P. (2008). Panoramic displays – Anzeige- und Bedienkonzept für die nächste generation von Flugzeugcockpits. In M. Grandt & A. Bauch (Eds.), Beiträge der Ergonomie zur Mensch-System-Integration (pp. 341–356). Bonn: DGLR.Google Scholar
  23. Kornwachs, K. (1999). Bedingungen verantwortlichen Handelns. In K. P. Timpe & M. Rötting (Eds.), Verantwortung und Führung in Mensch-Maschine-Systemen (pp. 51–79). Sinzheim: proUniversitate.Google Scholar
  24. Krah, M. (2011). UAS Heron 1 – Einsatz in Afghanistan. Strategie & Technik (Feb): 36–40.Google Scholar
  25. La Franchi, P. (2007). UAVs come of age. Flight International (7–13.08.): pp. 20–36.Google Scholar
  26. Lee, J. D. (2006). Human factors and ergonomics in automation design. In G. Salvendy (Ed.), Handbook of human factors and ergonomics (3rd ed.). New York: Wiley.Google Scholar
  27. Manning, S. D., Rash, C. E., LeDuc, P. A., Noback, R. K., & McKeon, J. (2004). The role of human causal factors in U.S. Army Unmanned Aerial Vehicle Accidents. Accessed 31 July 2011.
  28. Neujahr, H., & Reichel, K. (2009). C²-Konzept für eine Sensor-to-Shooter Mission. AgUAV-R-000-M-0109.Google Scholar
  29. Newman, R. L., & Ercoline, W. R. (2006). The basic T: The development of instrument panels. Aviation Space and Environmental Medicine, 77(3), 130 ff.Google Scholar
  30. NIAG. (2004). Pre-feasibility study on UAV autonomous operations. NATO Industry Advisory Group.Google Scholar
  31. Office of Secretary of Defense. (2005). Unmanned aircraft systems roadmap 2005–2030. Accessed 31 July 2011.
  32. Office of Secretary of Defense. (2007). Unmanned systems roadmap 2007–2032. Accessed 31 July 2011.
  33. Onken, R., & Schulte, A. (2010). System-ergonomic design of cognitive automation. Berlin: Springer.CrossRefGoogle Scholar
  34. Parson, H. M. (1985). Automation and the individual: Comprehensive and cooperative views. Human Factors, 27, 88–111.Google Scholar
  35. Roscoe, S. N. (1997). The adolescence of aviation psychology. In S. M. Casey (Ed.), Human factors history monograph series (Vol. 1). Santa Monica: The Human Factors and Ergonomics Society.Google Scholar
  36. Schulte, A., Meitinger, C., & Onken, R. (2009). Human factors in the guidance of uninhabitated vehicles: Oxomoron or tautology? The potential of cognitive and cooperative automation. Cognition Technology and Work. doi: 10.1007/s10111-008-0123-2.
  37. Sexton, G. A. (1988). Cockpit – Crew systems design and integration. In E. L. Wiener & D. C. Nagel (Eds.), Human factors in aviation. San Diego: Academic.Google Scholar
  38. Sheridan, T. B. (2006). Supervisory control. In G. Salvendy (Ed.), Handbook of human factors and ergonomics (3rd ed.). New York: Wiley.Google Scholar
  39. Sheridan, T. B., & Verplank, W. (1978). Human and computer control of undersea teleoperators. Accessed 11 July 2011.
  40. Svenmarck, P., Lif, P., Jander, H., & Borgvall, J. (2005). Studies of manned-unmanned teaming using cognitive systems engineering: An interim report. Accessed 11 July 2011.
  41. Walter, B., Sannier, A., Reiners, D., & Oliver, J. (2006). UAV swarm control: Calculating digital pheromone fields with the GPU. The Journal of Defense Modeling and Simulation, 3(3), 167–176.CrossRefGoogle Scholar
  42. Wickens, C. D. (2000). The trade-off of design for routine and unexpected performance: Implications of situation awareness. In M. R. Endsley & D. J. Garland (Eds.), Situation awareness analysis and measurement. Mahwah: Lawrence Erlbaum.Google Scholar
  43. Wickens, C. D., & Hollands, J. G. (2000). Engineering psychology and human performance. New Jersey: Prentice Hall.Google Scholar
  44. Williams, K. W. (2006). Human factors implications of unmanned aircraft accidents: Flight-control problems. Accessed 19 July 2011.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Flight Test, Technical Centre of Aircraft and Airworthiness WTD61ManchingGermany
  2. 2.Human Factors Engineering, CassidianManchingGermany

Personalised recommendations