Human Aspects of Information Ergonomics

  • Michael Herczeg
  • Michael Stein


The need for information within a real-time operational environment, e.g. a transportation system, is related to predefined tasks and emerging events as well as the resulting activities and communication processes. Human operators have to perform such tasks and react to such events taking place in their environment. They have to interact and communicate with other humans and machines to fulfill their duties.


Situational Awareness Information Search Process Control System Motivational Tendency Abstraction Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andersen, P. B. (1997). A theory of computer semiotics. New York: Cambridge University Press.Google Scholar
  2. Anderson, J. R. (2000). Learning and memory: An integrated approach (2nd ed.). New York: Wiley.Google Scholar
  3. Atkinson, R. C., & Shiffrin, R. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (Vol. 2). New York: Academic.Google Scholar
  4. Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 225, 82–90.CrossRefGoogle Scholar
  5. Baddeley, A. D. (1999). Essentials of human memory. Hove: Psychology Press.Google Scholar
  6. Billings, C. E. (1997). Aviation automation – The search for a human-centered approach. Hillsdale: Lawrence Erlbaum.Google Scholar
  7. Boff, K. R., & Lincoln, J. E. (1988). Fatigue: Effect on performance. Engineering data compendium: Human perception and performance. Wright Patterson AFB, Ohio: Harry G. Armstrong Aerospace Medical Research Laboratory.Google Scholar
  8. Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human–computer-interaction. Hillsdale: Lawrence Erlbaum.Google Scholar
  9. Carroll, J. M., & Olson, J. R. (1988). Mental models in human–computer interaction. In M. Helander (Ed.), Handbook of human computer interaction (pp. 45–65). Amsterdam: Elsevier.Google Scholar
  10. Dunckel, H. (1986). Handlungstheorie. In R. Rexilius & S. Grubitsch (Eds.), Psychologie – Theorien, Methoden und Arbeitsfelder (pp. 533–555). Hamburg: Rowohlt.Google Scholar
  11. Endsley, M. R. (1988). Design and evaluation for situation awareness enhancement. Proceedings of the human factors society 32nd annual meeting, Human Factors Society, Santa Monica, pp. 97–101.Google Scholar
  12. Endsley, M. R. (1995). Toward a theory of situation awareness. Human Factors, 37(1), 32–64.CrossRefGoogle Scholar
  13. Endsley, M. R. (2000). Theoretical underpinnings of situational awareness: A critical review. In M. R. Endsley & D. J. Garland (Eds.), Situation awareness – Analysis and measurement. Mahwah: Lawrence Erlbaum.Google Scholar
  14. Fairclough, S. H., Tattersall, A. J., & Houston, K. (2006). Anxiety and performance in the British driving test. Transportation Research Part F: Traffic Psychology and Behaviour, 9, 43–52.CrossRefGoogle Scholar
  15. Flemisch, F. O. (2001). Pointillistische Analyse der visuellen und nicht-visuellen Interaktionsressourcen am Beispiel Pilot-Assistenzsystem. Aachen: Shaker Verlag.Google Scholar
  16. Gaillard, A. W. (1993). Comparing the concepts of mental load and stress. Ergonomics, 36(9), 991–1005.MathSciNetCrossRefGoogle Scholar
  17. Gollwitzer, P. M. (1996). Das Rubikonmodell der Handlungsphasen. In J. Kuhl & H. Heckhausen (Eds.), Motivation, volition und handlung (Enzyklopädie der Psychologie: Themenbereich C, Theorie und Forschung: Ser. 4, Motivation und Emotion 4th ed., pp. 531–582). Bern/Göttingen/Seattle/Toronto: Hogrefe.Google Scholar
  18. Grandjean, D., Sander, D., & Scherer, K. R. (2008). Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Consciousness & Cognition, 17(2), 484–495.CrossRefGoogle Scholar
  19. Hacker, W. (1978). Allgemeine Arbeits- und Ingenieurpsychologie. Psychische Struktur und Regulation von Arbeitstätigkeiten. Bern: Huber.Google Scholar
  20. Hacker, W. (1986). Arbeitspsychologie. Berlin/Bern/Toronto/New York: Deutscher Verlag der Wissenschaften/Huber.Google Scholar
  21. Hancock, P. A., & Szalma, J. L. (2008). Performance under stress. In P. A. Hancock & J. L. Szalma (Eds.), Performance under stress. Aldershot: Ashgate.Google Scholar
  22. Hart, S. G., & Staveland, L. E. (1988). Development of a multi-dimensional workload rating scale: Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (pp. 139–183). Amsterdam: Elsevier.CrossRefGoogle Scholar
  23. Hart, S. G., & Wickens, C. D. (1990). Workload assessment and prediction. In H. R. Booher (Ed.), Manprint. An approach to system integration (pp. 257–296). New York: Van Nostrand Reinhold.Google Scholar
  24. Heckhausen, H. (1989). Motivation und Handeln. Berlin: Springer.Google Scholar
  25. Heckhausen, H., & Gollwitzer, P. M. (1987). Thought contents and cognitive functioning in motivational versus volitional states of mind. Motivation and Emotion, 11, 101–120.CrossRefGoogle Scholar
  26. Heckhausen, J., & Heckhausen, H. (2008). Motivation and action. New York: Cambridge University Press.CrossRefGoogle Scholar
  27. Herczeg, M. (1994). Software-Ergonomie. Bonn: Addison-Wesley.Google Scholar
  28. Herczeg, M. (2000). Sicherheitskritische Mensch-Maschine-Systeme. FOCUS MUL, 17(1), 6–12.Google Scholar
  29. Herczeg, M. (2002). Intention-based supervisory control – Kooperative Mensch-Maschine-Kommunikation in der Prozessführung. In M. Grandt & K.-P. Gärnter (Eds.), Situation awareness in der Fahrzeug- und Prozessführung (DGLR-Bericht 2002–04, pp. 29–42). Bonn: Deutsche Gesellschaft für Luft- und Raumfahrt.Google Scholar
  30. Herczeg, M. (2004). Interaktions- und Kommunikationsversagen in Mensch-Maschine-Systemen als Analyse- und Modellierungskonzept zur Verbesserung sicherheitskritischer Technologien. In M. Grandt (Ed.), Verlässlichkeit der Mensch-Maschine-Interaktion (DGLR-Bericht 2004–03, pp. 73–86). Bonn: Deutsche Gesellschaft für Luft- und Raumfahrt.Google Scholar
  31. Herczeg, M. (2006a). Interaktionsdesign. München: Oldenbourg.CrossRefGoogle Scholar
  32. Herczeg, M. (2006b). Differenzierung mentaler und konzeptueller Modelle und ihrer Abbildungen als Grundlage für das Cognitive Systems Engineering. In M. Grandt (Ed.), Cognitive Engineering in der Fahrzeug- und Prozessführung (DGLR-Bericht 2006–02, pp. 1–14). Bonn: Deutsche Gesellschaft für Luft- und Raumfahrt.Google Scholar
  33. Herczeg, M. (2006c). Analyse und Gestaltung multimedialer interaktiver Systeme. In U. Konradt, & B. Zimolong (Hrsg.), Ingenieurpsychologie, Enzyklopädie der Psychologie, Serie III, Band 2, (S. 531–562). Göttingen: Hogrefe Verlag.Google Scholar
  34. Herczeg, M. (2008). Vom Werkzeug zum Medium: Mensch-Maschine-Paradigmen in der Prozessführung. In M. Grandt & A. Bauch (Eds.), Beiträge der Ergonomie zur Mensch-System-Integration (DGLR-Bericht 2008–04, pp. 1–11). Bonn: Deutsche Gesellschaft für Luft- und Raumfahrt.Google Scholar
  35. Herczeg, M. (2009). Software-Ergonomie. Theorien, Modelle und Kriterien für gebrauchstaugliche interaktive Computersysteme (3rd ed.). München: Oldenbourg.CrossRefGoogle Scholar
  36. Herczeg, M. (2010). Die Rückkehr des Analogen: Interaktive Medien in der Digitalen Prozessführung. In M. Grandt & A. Bauch (Eds.), Innovative Interaktionstechnologien für Mensch-Maschine-Schnittstellen (pp. 13–28). Bonn: Deutsche Gesellschaft für Luft- und Raumfahrt.Google Scholar
  37. Hockey, G. R. (1986). Changes in operator efficiency as a function of environmental stress, fatigue and circadian rhythms. In K. R. Boff, L. Kaufmann, & J. P. Thomas (Eds.), Handbook of perception and human performance (Cognitive processes and performance, Vol. II). New York: Wiley.Google Scholar
  38. Immelmann, K., Scherer, K. R., & Vogel, C. (1988). Psychobiologie. Grundlagen des Verhaltens. Weinheim: Beltz-Verlag.Google Scholar
  39. Johnson, A., & Proctor, R. W. (2003). Attention: Theory and practice. London: Sage.Google Scholar
  40. Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice Hall.Google Scholar
  41. Lazarus, R. S. (1974). Psychological stress and coping in adaption and illness. International Journal of Psychiatry in Medicine, 5, 321–333.CrossRefGoogle Scholar
  42. Lazarus, R., & Folkman, S. (1984). Stress, appraisal, and coping. New York: Springer.Google Scholar
  43. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97.CrossRefGoogle Scholar
  44. Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart & Winston.CrossRefGoogle Scholar
  45. Nake, F. (2001). Das algorithmische Zeichen. In W. Bauknecht, W. Brauer, & T. Mück (Eds.). Tagungsband der GI/OCG Jahrestagung 2001, Bd. II, (pp. 736–742), Universität Wien.Google Scholar
  46. NATO. (2001). Research and technology organisation. The Human Factors and Medicine Panel (HFM) Research and Study Group 24. RTO-TR-021 NATO Guidelines on Human Engineering Testing and Evaluation. WWW-Document.
  47. Navon, D., & Gopher, D. (1979). On the economy of the human information processing system. Psychological Review, 86, 214–255.CrossRefGoogle Scholar
  48. Newell, A., & Simon, H. (1972). Human problem solving. Englewood Cliffs: Prentice Hall.Google Scholar
  49. Nordwall, B. D. (1995). Military cockpits keep autopilot interface simple. Aviation Week & Space Technology, 142(6), 54–55.Google Scholar
  50. Norman, D. A. (1986). Cognitive engineering. In D. A. Norman & S. W. Draper (Eds.), User centered system design (pp. 31–61). Hillsdale: Lawrence Erlbaum.Google Scholar
  51. Norman, D., & Bobrow, D. (1975). On data-limited and resource-limited processing. Journal of Cognitive Psychology, 7, 44–60.CrossRefGoogle Scholar
  52. Nöth, W. (2000). Handbuch der Semiotik. Stuttgart-Weimar: Metzler.Google Scholar
  53. Pinel, J. (1993). Biopsychology (2nd ed.). Allyn and Bacon, Boston.Google Scholar
  54. Rasmussen, J. (1983). Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(3), 257–266.Google Scholar
  55. Rasmussen, J. (1984). Strategies for state identification and diagnosis in supervisory control tasks, and design of computer-based support systems. In W. B. Rouse (Ed.), Advances in man-machine systems research (Vol. 1, pp. 139–193). Greenwich: JAI Press.Google Scholar
  56. Rasmussen, J. (1985a). The role of hierarchical knowledge representation in decision making and system management. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(2), 234–243.Google Scholar
  57. Rasmussen, J. (1985b). A framework for cognitive task analysis in systems design. Report M-2519, Risø National Laboratory.Google Scholar
  58. Rasmussen, J. (1986). Information processing and human–machine interaction. New York: North-Holland.Google Scholar
  59. Rasmussen, J., Pejtersen, A. M., & Goodstein, L. P. (1994). Cognitive systems engineering. New York: Wiley.Google Scholar
  60. Sanders, A. F. (1983). Towards a model of stress and human performance. Acta Psychologica, 53, 61–67.CrossRefGoogle Scholar
  61. Scheffer, D., & Heckhausen, H. (2008). Trait theories of motivation. In J. Heckhausen & H. Heckhausen (Eds.), Motivation and action. New York: Cambridge University Press.Google Scholar
  62. Scherer, K. R. (1984). On the nature and function of emotion: A component process approach. In K. R. Scherer & P. Ekman (Eds.), Approaches to emotion (pp. 293–317). Hillsdale: Erlbaum.Google Scholar
  63. Scherer, K. R. (1990). Theorien und aktuelle Probleme der Emotionspsychologie. In K. R. Scherer (Ed.), Enzyklopädie der Psychologie (C, IV, 3) (Psychologie der Emotion, pp. 1–38). Göttingen: Hogrefe.Google Scholar
  64. Schneider, K., & Dittrich, W. (1990). Evolution und Funktion von Emotionen. In K. R. Scherer (Ed.), Enzyklopädie der Psychologie, Teilband C/IV/3 (Psychologie der Emotion, pp. 41–114). Göttingen: Hogrefe.Google Scholar
  65. Schneider, K., & Schmalt, H.-D. (2000). Motivation. Stuttgart: Kohlhammer.Google Scholar
  66. Seitz, D. P., & Häcker, H. O. (2008). Qualitative befundanalyse des Konstruktes situational awareness – A qualitative analysis. In Bundesministerium der Verteidigung – PSZ III 6 (Ed.), Untersuchungen des Psychologischen Dienstes der Bundeswehr (Jahrgang, Vol. 43). Bonn: Verteidigungsministerium.Google Scholar
  67. Sheridan, T. B. (1987). Supervisory control. In G. Salvendy (Ed.), Handbook of human factors (pp. 1243–1268). New York: Wiley.Google Scholar
  68. Sheridan, T. B. (1988). Task allocation and supervisory control. In M. Helander (Ed.), Handbook of human–computer interaction (pp. 159–173). Amsterdam: Elsevier Science Publishers B.V. (North Holland).Google Scholar
  69. Simon, H. (1981). The sciences of the artificial. Cambridge: MIT Press.Google Scholar
  70. Stein, M. (2002). Entwicklung eines Modells zur Beschreibung des Transferprozesses am Beispiel Arbeitsschutz. In Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (Ed.), Schriftenreihe der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. Dortmund/Berlin: Wirtschafts-Verlag.Google Scholar
  71. Stein, M. (2008). Informationsergonomie. Ergonomische Analyse, Bewertung und Gestaltung von Informationssystemen. In Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (Hrsg.), Dormund: Druck der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin.Google Scholar
  72. Stein, M., & Müller, B. H. (2005). Motivation, Emotion und Lernen bei der Nutzung von internetbasierten Informationssystemen. In Gesellschaft für Arbeitswissenschaft (Ed.), Personalmanagement und Arbeitsgestaltung (Bericht zum 51. Kongress der Gesellschaft für Arbeitswissenschaft vom 22.–24. März 2005, pp. 665–668). Dortmund: GfA Press.Google Scholar
  73. Stein, M., Müller, B. H., & Seiler, K. (2002). Motivationales Erleben bei der Nutzung von internetbasierten Informationssystemen. In R. Trimpop, B. Zimolong, & A. Kalveram (Eds.), Psychologie der Arbeitssicherheit und Gesundheit – Neue Welten – Alte Welten 11. Workshop “Psychologie der Arbeitssicherheit”, Nümbrecht, 2001 (p. 330). Heidelberg: Roland Asanger.Google Scholar
  74. Szalma, J. L., & Hancock, P. A. (2002). Mental resources and performance under stress. WWW Dokument Verfügbar unter:
  75. Treisman, A. M. (1969). Strategies and models of selective attention. Psychological Review, 76, 282–292.CrossRefGoogle Scholar
  76. Tsang, P.S. & Vidulich, M.A. (2003). Principles and Practice of Aviation Psychology. Mahwah, NJ: Lawrence Erlbaum Association.Google Scholar
  77. Vicente, K. J. (1999). Cognitive work analysis. Hillsdale: Lawrence Erlbaum.Google Scholar
  78. Volpert, W. (1974). Handlungsstrukturanalyse als Beitrag zur Qualifikationsforschung. Köln: Pahl-Rugenstein.Google Scholar
  79. von Cranach, M., & Kalbermatten, U. (1982). Zielgerichtetes Alltagshandeln in der sozialen Interaktion. In W. Hacker et al. (Eds.), Kognitive und motivationale Aspekte der Handlung (pp. 59–75). Bern: Huber.Google Scholar
  80. Waag, W. L., & Bell, H. H. (1997). Situation assessment and decision making in skilled fighter pilots. In C. E. Zsambok & G. Klein (Eds.), Naturalistic decision making (pp. 247–254). Mahwah: Lawrence Erlbaum.Google Scholar
  81. Ware, C. (2000). Information visualization – Perception for design. San Diego: Academic.Google Scholar
  82. Wickens, C. D. (1980). The structure of attentional resources. In R. Nickerson (Ed.), Attention and performance VIII (pp. 239–257). Hillsdale: Erlbaum.Google Scholar
  83. Wickens, C. D. (1984). Processing resources in attention. In R. Parasuraman & D. R. Davies (Eds.), Varieties of attention (pp. 63–102). New York: Academic.Google Scholar
  84. Wickens, C. D. (2008). Multiple resources and mental workload. Human Factors, 50, 449–455.CrossRefGoogle Scholar
  85. Wickens, C. D., & Hollands, J. G. (2000). Engineering psychology and human performance. Upper Saddle River: Prentice Hall.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Multimedia and Interactive SystemsUniversity of LuebeckLuebeckGermany
  2. 2.German Air Force Institute of Aviation MedicineManchingGermany

Personalised recommendations