Advertisement

An Approach Based on Predicate Correlation to the Reduction of Plethoric Answer Sets

  • Patrick Bosc
  • Allel Hadjali
  • Olivier Pivert
  • Grégory Smits
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 398)

Abstract

Seeking data from large-scale databases often leads to a plethoric answer problem. A possible approach to reduce the set of retrieved items and to make it more manageable is to constrain the initial query with additional predicates. The approach presented in this paper relies on the identification of correlation links between predicates related to attributes of the relation of interest. Thus, the initial query is strengthened by additional predicates that are semantically close to the user-specified ones.

Keywords

User Query Correlation Degree Conjunctive Query Partition Element Linguistic Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bezdek, 1984]
    Bezdek, J.: Fcm: The fuzzy c-means clustering algorithm. Computers and Geosciences (1984)Google Scholar
  2. [Bodenhofer and Küng, 2003]
    Bodenhofer, U., Küng, J.: Fuzzy orderings in flexible query answering systems. Soft Computing 8, 512–522 (2003)CrossRefGoogle Scholar
  3. [Bosc et al., 2008]
    Bosc, P., Hadjali, A., Pivert, O.: Empty versus overabundant answers to flexible relational queries. Fuzzy Sets and Systems 159(12), 1450–1467 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. [Bruno et al., 2002]
    Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases: Mapping strategies and performance evaluation. ACM Transactions on Database Systems 27(2), 153–187 (2002)CrossRefGoogle Scholar
  5. [Chaudhuri et al., 2004]
    Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic ranking of databases query. In: Proc. of Int. Conf. on Very Large Databases, pp. 888–899 (2004)Google Scholar
  6. [Chomicki, 2002]
    Chomicki, J.: Querying With Intrinsic Preferences. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 34–52. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. [Gaasterland, 1992]
    Gaasterland, T.: Relaxation as a platform for cooperative answering. Journal of Intelligent Information Systems 1(3-4), 296–321 (1992)CrossRefGoogle Scholar
  8. [Ioannidis, 2003]
    Ioannidis, Y.: The history of histograms (abridged). In: Proc. of the 29th Int. Conf. on Very Large DataBases (2003)Google Scholar
  9. [Kießling, 2002]
    Kießling, W.: Foundations of preferences in database systems. In: Proc. of the 28th Int. Conf. on Very Large DataBases, pp. 311–322 (2002)Google Scholar
  10. [Koutrika and Ioannidis, 2004]
    Koutrika, G., Ioannidis, Y.: Personalization of queries in databases systems. In: Proc. of the 20th Int. Conf. on Data Engineering (2004)Google Scholar
  11. [Luo et al., 2007]
    Luo, Y., Lin, X., Wang, W., Zhou, X.: Spark: Top-k keyword query in relational databases. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 115–126 (2007)Google Scholar
  12. [Mishra and Koudas, 2009]
    Mishra, C., Koudas, N.: Interactive query refinement. In: Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, pp. 862–973 (2009)Google Scholar
  13. [Ortega-Binderberger et al., 2002]
    Ortega-Binderberger, M., Chakrabarti, K., Merhotra, S.: An approach to integrating query refinement in sql. In: Proc. Int. Conf. on Extending Data Base Technology, pp. 15–33 (2002)Google Scholar
  14. [Ozawa and Yamada, 1994]
    Ozawa, J., Yamada, K.: Cooperative answering with macro expression of a database. In: Proc. of the IPMU Conf., pp. 17–22 (1994)Google Scholar
  15. [Su et al., 2006]
    Su, W., Wang, J., Huang, Q., Lochovsky, F.: Query result ranking over e-commerce databases. In: Proc. of the CIKM (2006)Google Scholar
  16. [Ughetto et al., 2008]
    Ughetto, L., Voglozin, W., Mouaddib, N.: Database querying with personalized vocabulary using data summaries. Fuzzy Sets and Systems 159, 2030–2046 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Patrick Bosc
    • 1
  • Allel Hadjali
    • 1
  • Olivier Pivert
    • 1
  • Grégory Smits
    • 2
  1. 1.Irisa ENSSAT, Univ. Rennes 1LannionFrance
  2. 2.Irisa IUT Lannion, Univ. Rennes 1LannionFrance

Personalised recommendations