Long-Tail Recommendation Based on Reflective Indexing

  • Andrzej Szwabe
  • Michal Ciesielczyk
  • Pawel Misiorek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7106)


We propose a collaborative filtering data processing method based on reflective vector-space retraining, referred to as Progressive Reflective Indexing (PRI). We evaluate the method’s ability to provide recommendations of items from a long tail. In order to reflect ‘real-world’ demands, in particular those regarding non-triviality of recommendations, our evaluation is novelty-oriented. We compare PRI with a few widely-referenced collaborative filtering methods based on SVD and with Reflective Random Indexing (RRI) - a reflective data processing method established in the area of Information Retrieval. To demonstrate the superiority of PRI over other methods in long tail recommendation scenarios, we use the probabilistically interpretable AUROC measure. To show the relation between the structural properties of the user-item matrix and the optimal number of reflections we model the analyzed data sets as bipartite graphs.


information retrieval machine learning e-commerce applications collaborative filtering long tail RRI SVD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  2. 2.
    Anderson, C.: The Long Tail: Why the Future of Business is Selling Less of More. Hyperion (2006)Google Scholar
  3. 3.
    Basu, C., Hirsh, H., Cohen, W.: Recommendation as Classification: Using Social and Content-Based Information in Recommendation. In: Fifteenth National Conference on Artificial Intelligence, pp. 714–720 (1998)Google Scholar
  4. 4.
    Brynjolfsson, E., Hu, Y.J., Simester, D.: Goodbye Pareto Principle, Hello Long Tail: The Effect of Search Costs on the Concentration of Product Sales. Management Science (2011)Google Scholar
  5. 5.
    Ciesielczyk, M., Szwabe, A.: RI-based Dimensionality Reduction for Recommender Systems. In: 3rd International Conference on Machine Learning and Computing. IEEE Press, Singapore (2011)Google Scholar
  6. 6.
    Ciesielczyk, M., Szwabe, A., Prus-Zajaczkowski, B.: Interactive Collaborative Filtering with RI-based Approximation of SVD. In: 3rd International Conference on Computational Intelligence and Industrial Application. IEEE Press (2010)Google Scholar
  7. 7.
    Cohen, T., Schaneveldt, R., Widdows, D.: Reflective Random Indexing and Indirect Inference: A Scalable Method for Discovery of Implicit Connections. Journal of Biomedical Informatics 43(2), 240–256 (2010)CrossRefGoogle Scholar
  8. 8.
    Cremonesi, P., Koren, Y., Turrin, R.: Performance of Recommender Algorithms on Top-n Recommendation Tasks. In: Fourth ACM Conference on Recommender Systems (RecSys 2010), New York, NY, USA, pp. 39–46 (2010)Google Scholar
  9. 9.
    Desrosiers, C., Karypis, G.: A Comprehensive Survey of Neighborhood-based Recommendation Methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, 1st edn., pp. 107–144 (2011)Google Scholar
  10. 10.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Trans. Information Systems 22(1), 5–53 (2004)CrossRefGoogle Scholar
  11. 11.
    Park, Y.-J., Tuzhilin, A.: The Long Tail of Recommender Systems and How to Leverage It. In: 2008 ACM Conference on Recommender Systems (RecSys 2008), pp. 11–18 (2008)Google Scholar
  12. 12.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook, 1st edn. (2011)Google Scholar
  13. 13.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Application of Dimensionality Reduction in Recommender System - A Case Study. In: ACM WebKDD 2000 Web Mining for E-Commerce Workshop, Boston, MA, USA (2000)Google Scholar
  14. 14.
    van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge University Press, New York (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrzej Szwabe
    • 1
  • Michal Ciesielczyk
    • 1
  • Pawel Misiorek
    • 1
  1. 1.Institute of Control and Information EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations