Skip to main content

Auxin as Part of the Wounding Response in Plants

Abstract

In plants, different types of injury and physical damage are commonly referred as wounding. Some organs such as leaves and shoots have cutin as a protective barrier, but once a wound occurs, putative pathogen may gain entrance into the plant through the injured tissue. Consequently, plants have developed orchestrated responses to wounding at the histological, genetic, and biochemical levels resulting in a complex defense mechanism. Therefore, the response to wounding is aimed at restoring the physiological status of the damaged tissue and is critical to prevent further lesions.

Interestingly, the classical growth regulator auxin has been implicated in the wounding response. Even though initial reports showed an apparent antagonism between auxin and wounding, novel findings suggest a more intricate relationship between auxin, stress, and other plant defense pathways. Transcriptomic studies carried out in Arabidopsis and solanaceous had offered a wider comprehensive picture on the regulation by wounding of auxin-related genes.

In this chapter, we reviewed the participation of auxin-related genes as part of the complex mechanism that takes place during wounding in plants, particularly in Arabidopsis thaliana and solanaceous. In addition, we also raised a discussion about the participation of small molecules downstream wound signal such as NO, ROS, and eATP.

Keywords

  • Nitric Oxide
  • Hormone Signaling Pathway
  • Chymotrypsin Inhibitor
  • Reactive Oxygen Species Burst
  • Sweet Potato Root

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-25829-9_5
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-25829-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 5.1

References

  • Arasimowicz M, Floryszak-Wieczorek J, Milczarek G, Jelonek T (2009) Nitric oxide, induced by wounding, mediates redox regulation in pelargonium leaves. Plant Biol (Stuttg) 11:650–663

    CrossRef  CAS  Google Scholar 

  • Beligni M, Lamattina L (1999) Is nitric oxide toxic or protective? Trends Plant Sci 4:299–300

    PubMed  CrossRef  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    PubMed  CrossRef  CAS  Google Scholar 

  • Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Gomez-Rodriguez MV, Pedrajas JR, Begara-Morales JC, Sanchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813

    PubMed  CrossRef  CAS  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    PubMed  CrossRef  CAS  Google Scholar 

  • Chung KM, Sano H (2007) Transactivation of wound-responsive genes containing the core sequence of the auxin-responsive element by a wound-induced protein kinase-activated transcription factor in tobacco plants. Plant Mol Biol 65:763–773

    PubMed  CrossRef  CAS  Google Scholar 

  • Cooney RV, Harwood PJ, Custer LJ, Franke AA (1994) Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environ Health Perspect 102:460–462

    PubMed  CrossRef  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Del Río LA (2004) Enzymatic sources of nitric oxide in plant cells—beyond one protein-one function. New Phytol 162:246–248

    CrossRef  CAS  Google Scholar 

  • Corpas FJ, Carreras A, Esteban FJ, Chaki M, Valderrama R, del Rio LA, Barroso JB (2008a) Localization of S-nitrosothiols and assay of nitric oxide synthase and S-nitrosoglutathione reductase activity in plants. Methods Enzymol 437:561–574

    PubMed  CrossRef  CAS  Google Scholar 

  • Corpas FJ, Chaki M, Fernandez-Ocana A, Valderrama R, Palma JM, Carreras A, Begara-Morales JC, Airaki M, del Rio LA, Barroso JB (2008b) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722

    PubMed  CrossRef  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    PubMed  CrossRef  CAS  Google Scholar 

  • de Pinto MC, Tommasi F, De Gara L (2002) Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiol 130:698–708

    PubMed  CrossRef  Google Scholar 

  • Del Bianco M, Kepinski S (2011) Context, specificity, and self-organization in auxin response. Cold Spring Harb Perspect Biol 3:a001578

    PubMed  CrossRef  Google Scholar 

  • Fabbri AA, Fanelli C, Reverberi M, Ricelli A, Camera E, Urbanelli S, Rossini A, Picardo M, Altamura MM (2000) Early physiological and cytological events induced by wounding in potato tuber. J Exp Bot 51:1267–1275

    PubMed  CrossRef  CAS  Google Scholar 

  • Foresi N, Laxalt AM, Tonón C, Casalongue C, Lamattina L (2007) Extracellular ATP induces nitric oxide production in tomato cell suspensions. Plant Physiol 145:589–592

    PubMed  CrossRef  CAS  Google Scholar 

  • Garcês H, Durzan D, Pedroso MC (2001) Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana. Ann Bot 87:567–574

    CrossRef  Google Scholar 

  • Glauser G, Dubugnon L, Mousavi SAR, Serge Rudaz S, Wolfender J-L, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284:34506–34513

    PubMed  CrossRef  CAS  Google Scholar 

  • Godoy AV, Lazzaro AS, Casalongue CA, San Segundo B (2000) Expression of a Solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions. Plant Sci 152:123–134

    CrossRef  CAS  Google Scholar 

  • Gouvea CMCP, Souza JF, Magalhaes ACN, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187

    CrossRef  CAS  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    PubMed  CrossRef  CAS  Google Scholar 

  • Hildmann T, Ebneth M, Pena-Cortes H, Sanchez-Serrano JJ, Willmitzer L, Prat S (1992) General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell 4:1157–1170

    PubMed  CrossRef  CAS  Google Scholar 

  • Huang X, Stettmaier K, Michel C, Hutzler P, Mueller M, Durner J (2004) Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218:938–946

    PubMed  CrossRef  CAS  Google Scholar 

  • Iglesias MJ, Terrile MC, Bartoli CG, D’Ippolito S, Casalongue CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222

    PubMed  CrossRef  CAS  Google Scholar 

  • Imanishi S, Hashizume K, Kojima H, Ichihara A, Nakamura K (1998a) An mRNA of tobacco cell, which is rapidly inducible by methyl jasmonate in the presence of cycloheximide, codes for a putative glycosyltransferase. Plant Cell Physiol 39:202–211

    PubMed  CAS  Google Scholar 

  • Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T, Sakagami Y, Yamada Y, Nakamura K (1998b) Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol 38:1101–1111

    PubMed  CrossRef  CAS  Google Scholar 

  • Jeter CR, Tang W, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664

    PubMed  CrossRef  CAS  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373–382

    PubMed  CrossRef  CAS  Google Scholar 

  • Kernan A, Thornburg RW (1989) Auxin levels regulate the expression of a wound-inducible proteinase inhibitor ii-chloramphenicol acetyl transferase gene fusion in vitro and in vivo. Plant Physiol 91:73–78

    PubMed  CrossRef  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716–720

    PubMed  CrossRef  CAS  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    PubMed  CrossRef  CAS  Google Scholar 

  • Lanteri ML, Laxalt AM, Lamattina L (2008) Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber. Plant Physiol 147:188–198

    PubMed  CrossRef  CAS  Google Scholar 

  • León J, Rojo E, Sánchez-Serrano JJ (2001) Wound signalling in plants. J Exp Bot 52:1–9

    PubMed  CrossRef  Google Scholar 

  • Lombardo MC, Graziano M, Polacco J, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1:28–33

    PubMed  CrossRef  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    PubMed  CrossRef  CAS  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    PubMed  CrossRef  Google Scholar 

  • Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6557

    PubMed  CrossRef  CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    PubMed  CrossRef  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    PubMed  CrossRef  CAS  Google Scholar 

  • Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnol J 2:359–366

    PubMed  CrossRef  CAS  Google Scholar 

  • Paris R, Lamattina L, Casalongue CA (2007) Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiol Biochem 45:80–86

    PubMed  CrossRef  CAS  Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    PubMed  CrossRef  CAS  Google Scholar 

  • Pena-Cortes H, Willmitzer L, Sanchez-Serrano JJ (1991) Abscisic acid mediates wound induction but not developmental-specific expression of the proteinase inhibitor II gene family. Plant Cell 3:963–972

    PubMed  CrossRef  CAS  Google Scholar 

  • Pickett CB, Lu AY (1989) Glutathione S-transferases: gene structure, regulation, and biological function. Annu Rev Biochem 58:743–764

    PubMed  CrossRef  CAS  Google Scholar 

  • Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant Microbe Interact 16:1094–1105

    PubMed  CrossRef  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    PubMed  CrossRef  CAS  Google Scholar 

  • Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benkova E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911

    PubMed  CrossRef  CAS  Google Scholar 

  • Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270:1988–1992

    PubMed  CrossRef  CAS  Google Scholar 

  • Song CJ, Steinebrunner I, Wang X, Stout SC, Roux SJ (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol 140:1222–1232

    PubMed  CrossRef  CAS  Google Scholar 

  • Sueldo DJ, Foresi NP, Casalongue CA, Lamattina L, Laxalt AM (2010) Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production in suspension-cultured tomato cells. New Phytol 185:909–916

    PubMed  CrossRef  CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    PubMed  CrossRef  CAS  Google Scholar 

  • Tanaka Y, Uritani I (1979) Effect of auxin and other hormones on the metabolic response to wounding in sweet potato roots. Plant Cell Physiol 20:1557–1564

    CAS  Google Scholar 

  • Tang W, Brady SR, Sun Y, Muday GK, Roux SJ (2003) Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol 131:147–154

    PubMed  CrossRef  CAS  Google Scholar 

  • Terrile MC, Olivieri FP, Bottini R, Casalongue C (2006) Indole-3-acetic acid attenuates the fungal lesions in infected potato tubers. Physiol Plant 127:205–211

    CrossRef  CAS  Google Scholar 

  • Thompson NP (1970) The transport of auxin and regeneration of xylem in okra and pea stems. Am J Bot 57:390–393

    PubMed  CrossRef  CAS  Google Scholar 

  • Thornburg RW, Li X (1991) Wounding Nicotiana tabacum leaves causes a decline in endogenous indole-3-acetic acid. Plant Physiol 96:802–805

    PubMed  CrossRef  CAS  Google Scholar 

  • Tonón C, Terrile MC, Iglesias MJ, Lamattina L, Casalongué CA (2010) Extracellular ATP, nitric oxide and superoxide act coordinately to regulate hypocotyl growth in etiolated Arabidopsis seedlings. J Plant Physiol 167:540–546

    PubMed  CrossRef  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    PubMed  CrossRef  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defense responses. Curr Opin Plant Biol 7:449–455

    PubMed  CrossRef  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    PubMed  CrossRef  Google Scholar 

  • Yap YK, Kodama Y, Waller F, Chung KM, Ueda H, Nakamura K, Oldsen M, Yoda H, Yamaguchi Y, Sano H (2005) Activation of a novel transcription factor through phosphorylation by WIPK, a wound-induced mitogen-activated protein kinase in tobacco plants. Plant Physiol 139:127–137

    PubMed  CrossRef  CAS  Google Scholar 

  • Zanetti ME, Terrile MC, Godoy AV, San Segundo B, Casalongue CA (2003) Molecular cloning and characterization of a potato cDNA encoding a stress regulated Aux/IAA protein. Plant Physiol Biochem 41:755–760

    CrossRef  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia A. Casalongué .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Casalongué, C.A., Fiol, D.F., París, R., Godoy, A.V., D‘Ippólito, S., Terrile, M.C. (2012). Auxin as Part of the Wounding Response in Plants. In: Khan, N., Nazar, R., Iqbal, N., Anjum, N. (eds) Phytohormones and Abiotic Stress Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25829-9_5

Download citation