Arasimowicz M, Floryszak-Wieczorek J, Milczarek G, Jelonek T (2009) Nitric oxide, induced by wounding, mediates redox regulation in pelargonium leaves. Plant Biol (Stuttg) 11:650–663
CrossRef
CAS
Google Scholar
Beligni M, Lamattina L (1999) Is nitric oxide toxic or protective? Trends Plant Sci 4:299–300
PubMed
CrossRef
Google Scholar
Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39
PubMed
CrossRef
CAS
Google Scholar
Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Gomez-Rodriguez MV, Pedrajas JR, Begara-Morales JC, Sanchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813
PubMed
CrossRef
CAS
Google Scholar
Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677
PubMed
CrossRef
CAS
Google Scholar
Chung KM, Sano H (2007) Transactivation of wound-responsive genes containing the core sequence of the auxin-responsive element by a wound-induced protein kinase-activated transcription factor in tobacco plants. Plant Mol Biol 65:763–773
PubMed
CrossRef
CAS
Google Scholar
Cooney RV, Harwood PJ, Custer LJ, Franke AA (1994) Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environ Health Perspect 102:460–462
PubMed
CrossRef
CAS
Google Scholar
Corpas FJ, Barroso JB, Del Río LA (2004) Enzymatic sources of nitric oxide in plant cells—beyond one protein-one function. New Phytol 162:246–248
CrossRef
CAS
Google Scholar
Corpas FJ, Carreras A, Esteban FJ, Chaki M, Valderrama R, del Rio LA, Barroso JB (2008a) Localization of S-nitrosothiols and assay of nitric oxide synthase and S-nitrosoglutathione reductase activity in plants. Methods Enzymol 437:561–574
PubMed
CrossRef
CAS
Google Scholar
Corpas FJ, Chaki M, Fernandez-Ocana A, Valderrama R, Palma JM, Carreras A, Begara-Morales JC, Airaki M, del Rio LA, Barroso JB (2008b) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722
PubMed
CrossRef
CAS
Google Scholar
Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905
PubMed
CrossRef
CAS
Google Scholar
de Pinto MC, Tommasi F, De Gara L (2002) Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiol 130:698–708
PubMed
CrossRef
Google Scholar
Del Bianco M, Kepinski S (2011) Context, specificity, and self-organization in auxin response. Cold Spring Harb Perspect Biol 3:a001578
PubMed
CrossRef
Google Scholar
Fabbri AA, Fanelli C, Reverberi M, Ricelli A, Camera E, Urbanelli S, Rossini A, Picardo M, Altamura MM (2000) Early physiological and cytological events induced by wounding in potato tuber. J Exp Bot 51:1267–1275
PubMed
CrossRef
CAS
Google Scholar
Foresi N, Laxalt AM, Tonón C, Casalongue C, Lamattina L (2007) Extracellular ATP induces nitric oxide production in tomato cell suspensions. Plant Physiol 145:589–592
PubMed
CrossRef
CAS
Google Scholar
Garcês H, Durzan D, Pedroso MC (2001) Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana. Ann Bot 87:567–574
CrossRef
Google Scholar
Glauser G, Dubugnon L, Mousavi SAR, Serge Rudaz S, Wolfender J-L, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284:34506–34513
PubMed
CrossRef
CAS
Google Scholar
Godoy AV, Lazzaro AS, Casalongue CA, San Segundo B (2000) Expression of a Solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions. Plant Sci 152:123–134
CrossRef
CAS
Google Scholar
Gouvea CMCP, Souza JF, Magalhaes ACN, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187
CrossRef
CAS
Google Scholar
Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777
PubMed
CrossRef
CAS
Google Scholar
Hildmann T, Ebneth M, Pena-Cortes H, Sanchez-Serrano JJ, Willmitzer L, Prat S (1992) General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell 4:1157–1170
PubMed
CrossRef
CAS
Google Scholar
Huang X, Stettmaier K, Michel C, Hutzler P, Mueller M, Durner J (2004) Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218:938–946
PubMed
CrossRef
CAS
Google Scholar
Iglesias MJ, Terrile MC, Bartoli CG, D’Ippolito S, Casalongue CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222
PubMed
CrossRef
CAS
Google Scholar
Imanishi S, Hashizume K, Kojima H, Ichihara A, Nakamura K (1998a) An mRNA of tobacco cell, which is rapidly inducible by methyl jasmonate in the presence of cycloheximide, codes for a putative glycosyltransferase. Plant Cell Physiol 39:202–211
PubMed
CAS
Google Scholar
Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T, Sakagami Y, Yamada Y, Nakamura K (1998b) Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol 38:1101–1111
PubMed
CrossRef
CAS
Google Scholar
Jeter CR, Tang W, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664
PubMed
CrossRef
CAS
Google Scholar
Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373–382
PubMed
CrossRef
CAS
Google Scholar
Kernan A, Thornburg RW (1989) Auxin levels regulate the expression of a wound-inducible proteinase inhibitor ii-chloramphenicol acetyl transferase gene fusion in vitro and in vivo. Plant Physiol 91:73–78
PubMed
CrossRef
CAS
Google Scholar
Kovtun Y, Chiu WL, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716–720
PubMed
CrossRef
CAS
Google Scholar
Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136
PubMed
CrossRef
CAS
Google Scholar
Lanteri ML, Laxalt AM, Lamattina L (2008) Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber. Plant Physiol 147:188–198
PubMed
CrossRef
CAS
Google Scholar
León J, Rojo E, Sánchez-Serrano JJ (2001) Wound signalling in plants. J Exp Bot 52:1–9
PubMed
CrossRef
Google Scholar
Lombardo MC, Graziano M, Polacco J, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1:28–33
PubMed
CrossRef
Google Scholar
Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439
PubMed
CrossRef
CAS
Google Scholar
O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917
PubMed
CrossRef
Google Scholar
Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6557
PubMed
CrossRef
CAS
Google Scholar
Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956
PubMed
CrossRef
CAS
Google Scholar
Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286
PubMed
CrossRef
CAS
Google Scholar
Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnol J 2:359–366
PubMed
CrossRef
CAS
Google Scholar
Paris R, Lamattina L, Casalongue CA (2007) Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiol Biochem 45:80–86
PubMed
CrossRef
CAS
Google Scholar
Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046
PubMed
CrossRef
CAS
Google Scholar
Pena-Cortes H, Willmitzer L, Sanchez-Serrano JJ (1991) Abscisic acid mediates wound induction but not developmental-specific expression of the proteinase inhibitor II gene family. Plant Cell 3:963–972
PubMed
CrossRef
CAS
Google Scholar
Pickett CB, Lu AY (1989) Glutathione S-transferases: gene structure, regulation, and biological function. Annu Rev Biochem 58:743–764
PubMed
CrossRef
CAS
Google Scholar
Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant Microbe Interact 16:1094–1105
PubMed
CrossRef
CAS
Google Scholar
Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110
PubMed
CrossRef
CAS
Google Scholar
Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benkova E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911
PubMed
CrossRef
CAS
Google Scholar
Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270:1988–1992
PubMed
CrossRef
CAS
Google Scholar
Song CJ, Steinebrunner I, Wang X, Stout SC, Roux SJ (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol 140:1222–1232
PubMed
CrossRef
CAS
Google Scholar
Sueldo DJ, Foresi NP, Casalongue CA, Lamattina L, Laxalt AM (2010) Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production in suspension-cultured tomato cells. New Phytol 185:909–916
PubMed
CrossRef
CAS
Google Scholar
Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309
PubMed
CrossRef
CAS
Google Scholar
Tanaka Y, Uritani I (1979) Effect of auxin and other hormones on the metabolic response to wounding in sweet potato roots. Plant Cell Physiol 20:1557–1564
CAS
Google Scholar
Tang W, Brady SR, Sun Y, Muday GK, Roux SJ (2003) Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol 131:147–154
PubMed
CrossRef
CAS
Google Scholar
Terrile MC, Olivieri FP, Bottini R, Casalongue C (2006) Indole-3-acetic acid attenuates the fungal lesions in infected potato tubers. Physiol Plant 127:205–211
CrossRef
CAS
Google Scholar
Thompson NP (1970) The transport of auxin and regeneration of xylem in okra and pea stems. Am J Bot 57:390–393
PubMed
CrossRef
CAS
Google Scholar
Thornburg RW, Li X (1991) Wounding Nicotiana tabacum leaves causes a decline in endogenous indole-3-acetic acid. Plant Physiol 96:802–805
PubMed
CrossRef
CAS
Google Scholar
Tonón C, Terrile MC, Iglesias MJ, Lamattina L, Casalongué CA (2010) Extracellular ATP, nitric oxide and superoxide act coordinately to regulate hypocotyl growth in etiolated Arabidopsis seedlings. J Plant Physiol 167:540–546
PubMed
CrossRef
Google Scholar
Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790
PubMed
CrossRef
CAS
Google Scholar
Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defense responses. Curr Opin Plant Biol 7:449–455
PubMed
CrossRef
CAS
Google Scholar
Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129
PubMed
CrossRef
Google Scholar
Yap YK, Kodama Y, Waller F, Chung KM, Ueda H, Nakamura K, Oldsen M, Yoda H, Yamaguchi Y, Sano H (2005) Activation of a novel transcription factor through phosphorylation by WIPK, a wound-induced mitogen-activated protein kinase in tobacco plants. Plant Physiol 139:127–137
PubMed
CrossRef
CAS
Google Scholar
Zanetti ME, Terrile MC, Godoy AV, San Segundo B, Casalongue CA (2003) Molecular cloning and characterization of a potato cDNA encoding a stress regulated Aux/IAA protein. Plant Physiol Biochem 41:755–760
CrossRef
CAS
Google Scholar
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632
PubMed
CrossRef
CAS
Google Scholar