Computer-Aided Detection of Diabetic Retinopathy Progression

  • José Cunha-Vaz
  • Rui Bernardes
  • Torcato Santos
  • Carlos Oliveira
  • Conceição Lobo
  • Isabel Pires
  • Luisa Ribeiro


It is considered crucial for diabetic retinopathy (DR) management to identify disease progression in clinical practice. Automated computer-aided analysis of fundus digital photographs giving microaneurysm formation and disappearance rates together with OCT measurements of extracellular space and retinal thickness, both based on non-invasive procedures allow close follow-up of the main alterations occurring in the diabetic retina: microaneurysm turnover, capillary closure and alteration of blood-retinal barrier. Determination of the activity of the retinal disease and individual risk profiles using non-invasive procedures is expected to contribute to personalized management of diabetic retinopathy and prevent its vision-threatening complications, macular oedema and proliferative retinopathy. Finally, automated computer-aided analysis of fundus digital photographs, namely, the Retmarker, offers a promising contribution to reduce the burden of manual grading in DR screening programmes.


Diabetic Retinopathy Macular Oedema Probability Density Function Proliferative Retinopathy Diabetic Retina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    King H, Aubert RE, Herman WH (1998) Global ­burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21(9):1414–1431PubMedCrossRefGoogle Scholar
  2. 2.
    Cunha-Vaz JG, Bernardes R (2005) Nonproliferative retinopathy in diabetes type 2. Initial stages and characterization of phenotypes. Prog Retin Eye Res 24:355–377PubMedCrossRefGoogle Scholar
  3. 3.
    Cunha-Vaz J (2010) An integrated perspective on diabetic retinopathy in type 2 diabetes: 10.4 characterization of retinopathy phenotypes. In: Cunha-Vaz J (ed) Diabetic retinopathy. World Scientific Publishing, Singapore, pp 296–300CrossRefGoogle Scholar
  4. 4.
    Klein R, Klein B, Moss SE, Cruickshanks KJ (1995) The Wisconsin epidemiologic study of diabetic retinopathy. XV. The long-term incidence of macular edema. Ophthalmology 102:7–16PubMedGoogle Scholar
  5. 5.
    Csaky KG, Richman EA, Ferris FL (2008) Report from the NEI/FDA ophthalmic clinical trial design and endpoints symposium. Invest Ophthalmol Vis Sci 49:479–489PubMedCrossRefGoogle Scholar
  6. 6.
    Kohner AM, Stratton IM, Aldington SJ, Turner RC, Matthews DR, UK Prospective Study Group (1999) Microaneurysms in the development of diabetic retinopathy (UKPDS 42). Diabetologia 45:1107–1112CrossRefGoogle Scholar
  7. 7.
    Klein R, Meuer SM, Scot E, Moss MA, Klein BEK (1989) The relationship of retinal microaneurysm counts to the 4-year progression of diabetic retinopathy. Arch Ophthalmol 107:1780–1785PubMedCrossRefGoogle Scholar
  8. 8.
    Sjølie AK, Klein R, Porta M, Orchard T, Fuller J, Parving HH, Bilous R, Aldington S, Chaturvedi N (2011) Retinal microaneurysm count predicts progression and regression of diabetic retinopathy. Post-hoc results from the DIRECT programme. Diabet Med 28(3):345–351PubMedGoogle Scholar
  9. 9.
    Torrent-Solans T, Duarte L, Monteiro R, Almeida E, Bernardes R, Cunha-Vaz J (2004) Red dots counting on digitalized fundus images of mild nonproliferative retinopathy in diabetes type 2. ARVO Meet Abstr 45:2985Google Scholar
  10. 10.
    Bernardes R, Nunes S, Pereira I, Torrent T, Rosa A, Coelho D, Cunha-Vaz J (2009) Computer-assisted microaneurysm turnover in the early stages of diabetic retinopathy. Ophthalmologica 223:284–291PubMedCrossRefGoogle Scholar
  11. 11.
    Sharp PF, Olson J, Strachan F, Hipwell J, Ludbrook A, O’Donnell M, Wallace S, Goatman K, Grant A, Waugh N, McHardy K, Forrester JV (2003) The value of digital imaging in diabetic retinopathy. Health Technol Assess 7:1–119PubMedGoogle Scholar
  12. 12.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853CrossRefGoogle Scholar
  13. 13.
    Cunha-Vaz JG (1997) Optical sensors for clinical ­ocular fluorometry. Prog Retin Eye Res 16:243–270CrossRefGoogle Scholar
  14. 14.
    Bernardes R, Santos T, Serranho P, Lobo C, ­Cunha-Vaz J (2011) Noninvasive Evaluation of Retinal Leakage Using OCT. Ophthalmologica 226(2):29–36PubMedCrossRefGoogle Scholar
  15. 15.
    Byeon SH, Hwanf Chu Y, Lee H, Lee SY, Kwon OW (2009) Foveal ganglion cell layer damage in ischemic diabetic maculopathy. Correlation of optical coherence tomographic and anatomic changes. Ophthalmology 116(10):1949–1959PubMedCrossRefGoogle Scholar
  16. 16.
    Oliveira C, Cristovão L, Ribeiro L, Faria Abreu J, Cunha-Vaz J (2011) Improved automated screening of diabetic retinopathy. Ophthalmologica 226(4):191–197Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • José Cunha-Vaz
    • 1
    • 2
  • Rui Bernardes
    • 1
    • 2
  • Torcato Santos
    • 3
  • Carlos Oliveira
    • 4
  • Conceição Lobo
    • 3
    • 5
    • 6
  • Isabel Pires
    • 6
    • 7
  • Luisa Ribeiro
    • 3
  1. 1.AIBILI – Association for Innovation and Biomedical Research on Light and ImageCoimbraPortugal
  2. 2.Faculty of MedicineUniversity of Coimbra, Centre of New Technologies for MedicineCoimbraPortugal
  3. 3.AIBILI – Association for Innovation and Biomedical Research on Light and Image, Centre of New Technologies for MedicineCoimbraPortugal
  4. 4.Critical Health, Centre for Clinical TrailsCoimbraPortugal
  5. 5.Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  6. 6.Department of OphthalmologyUniversity Hospital of CoimbraCoimbraPortugal
  7. 7.AIBILI – Association for Innovation and Biomedical Research on Light and Image Centre for Clinical TrailsCoimbraPortugal

Personalised recommendations