Fundamentals of Intellectual Technologies

  • Alexander P. Rotshtein
  • Hanna B. Rakytyanska
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 275)


Intellectual technologies which are used to do the tasks of identification and decision making in this book represent a combination of three independent theories:

of fuzzy sets - as a means of natural language expressions and logic evidence formalization;

of neural nets - artificial analogs of the human brain simulating the capability to learn;

of genetic algorithms - as a means of optimal decision synthesis from a multiplicity of initial variants on which the operations of crossing, mutation and selection are performed.


Genetic Algorithm Membership Function Fuzzy Number Roulette Wheel Fuzzy Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning, Part 1-3. Information Sciences 8, 199–251 (1975); 9, 301 – 357, 43 – 80 (1976)MathSciNetGoogle Scholar
  2. 2.
    Zadeh, L.A.: Fuzzy Sets as a Basic for a Theory of Possibility. Fuzzy Sets and Systems 1, 3–28 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Rummelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1,2, p. 320. The MIT Press (1986)Google Scholar
  4. 4.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representation by Back - Propagation Errors. Nature 323, 533–536 (1986)CrossRefGoogle Scholar
  5. 5.
    Eickhoff, P.: System Identification: Parameter and State Estimation. Wiley, London (1974)Google Scholar
  6. 6.
    Tsypkin, Y.Z.: Information Theory of Identification, p. 320. Nauka, Moscow (1984) (in Russian) zbMATHGoogle Scholar
  7. 7.
    Shteinberg, S.E.: Identification in Control Systems, p. 81. Energoatomizdat, Moscow (1987) (in Russian) Google Scholar
  8. 8.
    Reklaitis, G.V., Ravindran, A., Ragsdell, K.M.: Engineering Optimization. In: Methods and Applications. John Wiley & Sons, New York (1983)Google Scholar
  9. 9.
    Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley (1989)Google Scholar
  10. 10.
    Tang, K.S., Man, K.F., Kwong, S., He, Q.: Genetic Algorithms and Their Applications. IEEE Signal Processing Magazine, 22–36 (November 1996)Google Scholar
  11. 11.
    Kaufmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic: Theory and Applications. Van Nostrand Reinhold, New York (1985)Google Scholar
  12. 12.
    Pospelov, D.A. (ed.): Fuzzy Sets in Management Models and Artificial Intelligence. Nauka, Moscow (1986) (in Russian) Google Scholar
  13. 13.
    Bellman, R.E., Zadeh, L.A.: Decision-Making in a Fuzzy Environment. Management Science 17(4), 141–164 (1970)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yager, R.R.: Fuzzy Set and Possibility Theory: Recent Developments. Pergamon Press, New York (1982) (Russian Translation, 1986) Google Scholar
  15. 15.
    Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty, p. 263. Plenum Press, New York (1988)zbMATHGoogle Scholar
  16. 16.
    Borisov, A.N., Krumberg, O.A., Fedorov, I.P.: Decision Making based on Fuzzy Models: Examples Use, p. 184. Zinatne, Riga (1990) (in Russian) Google Scholar
  17. 17.
    Zimmermann, H.-J.: Fuzzy Set Theory and Its Applications, p. 315. Kluwer, Dordrecht (1991)zbMATHGoogle Scholar
  18. 18.
    Zadeh, L., Kacprzyk, J.: Fuzzy Logic for the Management of Uncertainty, p. 676. John Wiley & Sons, Chichester (1992)Google Scholar
  19. 19.
    Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications, p. 592. Prentice Hall PTR, New York (1995)zbMATHGoogle Scholar
  20. 20.
    Ross, T.J.: Fuzzy Logic with Engineering Applications, p. 593. Wiley, Chichester (1995)zbMATHGoogle Scholar
  21. 21.
    Pedrycz, W., Gomide, F.: An introduction to fuzzy sets: Analysis and Design. A Bradford Book, p. 465. The MIT Press (1998)Google Scholar
  22. 22.
    Gen, M., Cheng, R.: Genetic Algorithms and Engineering Design, p. 352. John Wiley & Sons, New York (1997)Google Scholar
  23. 23.
    Haupt, R., Haupt, S.: Practical Genetic Algorithms, p. 177. John Willey & Sons, New York (1998)zbMATHGoogle Scholar
  24. 24.
    Hinton, G.E.: How Neural Networks Learn from Experience. Scientific American, 145–151 (September 1992)Google Scholar
  25. 25.
    Hung, S.L., Adeli, H.: Machine Learning, p. 211. John Willey & Sons, New York (1995)zbMATHGoogle Scholar
  26. 26.
    Mkrtchan, S.O.: Neurons and Neural Networks, p. 272. Energia, Moscow (1971) (in Russian)Google Scholar
  27. 27.
    Amosov, N.M. (ed.): Neurocomputers and Intelligent Robots, Kiev, Naukova Dumka, p. 272 (1991) (in Russian) Google Scholar
  28. 28.
    von Altrock, C.: Fuzzy Logic & NeuroFuzzy Applications Explained, p. 350. Prentice Hall PTR, New Jersey (1995)Google Scholar
  29. 29.
    Lin, C.T., Lee, C.S.: Neural Fuzzy Systems. Prentice Hall PTR, New York (1996)Google Scholar
  30. 30.
    Nauck, D., Klawonn, F., Kruse, R.: Foundation of Neuro–Fuzzy Systems, p. 305. John Willey & Sons, New York (1997)Google Scholar
  31. 31.
    Bishop, C.M.: Neural Networks for Pattern Recognition, p. 482. Oxford University Press (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander P. Rotshtein
    • 1
  • Hanna B. Rakytyanska
    • 2
  1. 1.Department of Industrial Engineering and ManagementJerusalem College of Technology - Lev InstituteJerusalemIsrael
  2. 2.Department of Software DesignVinnytsia National Technical UniversityVinnitsaUkraine

Personalised recommendations