Advertisement

Synchronization of Chaotic Delayed Neural Networks via Sampled-Data Feedback Control with Stochastic Sampling

  • Yan Chen
  • Xiaomei Zhang
  • Guiyin Shi
  • Zhenjuan Zhang
  • Weiguo Ma
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 129)

Abstract

This paper deals with the synchronization of chaotic delayed neural networks via sampled-data feedback control with multiple stochastic sampling periods, whose occurrence probabilities are given constants. For the simplicity of technical development, the case with two stochastic sampling periods is considered. By means of the input-delay approach to sampled-data systems, the synchronization error system is represented as a stochastic continuous time system with multiple delays. A mean-square asymptotic stability condition for the synchronization error system is derived via a discretised Lyapunov-Krasovskii function method. The sampled-data feedback controller design is formulated via linear matrix inequalities based convex optimization problems, which can be efficiently solved via standard numerical software. A numerical example illustrates the efficiency of the proposed method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barajas-Ramirez, J.G., Chen, G., Shieh, L.S.: Fuzzy chaos synchronization via sampled driving signals. Int. J. Bifurc. Chaos 14, 2721–2733 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Fridman, E., Seuret, A., Richard, J.P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40, 1441–1446 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Gao, H.J., Wu, J.L., Peng, S.: Robust sampled-data H  ∞  control with stochastic sampling. Automatica 45, 1729–1736 (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    Gu, K., Kharitonov, V., Chen, J.: Stability of time-delay systems. Springer, Berlin (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Lu, J.G., Hill, D.J.: Global asymptotical synchronization of chaotic Lur’e systems using sampled data: a linear matrix inequality approach. IEEE Trans. Circuits Syst. II, Exp. Briefs 55, 586–590 (2008)CrossRefGoogle Scholar
  6. 6.
    Mikheev, Y., Sobolev, V., Fridman, E.: Asymptotic analysis of digital control systems. Automat. Remote Control 49, 1175–1180 (1988)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Yang, T., Chua, L.O.: Control of chaos using sampled-data feedback control. Int. J. Bifurc. Chaos 8, 2433–2438 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Zhang, C.K., He, Y., Wu, M.: Improved global asymptotical synchronization of chaotic Lur’e systems with sampled-data control. IEEE Trans. Circuits Syst. II, Exp. Briefs 56, 320–324 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Yue, D., Tian, E.: Synchronization control of stochastic delayed neural networks communicating with unreliable links. In: Proc. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, pp. 6756–6761 (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Yan Chen
    • 1
  • Xiaomei Zhang
    • 2
  • Guiyin Shi
    • 1
  • Zhenjuan Zhang
    • 2
  • Weiguo Ma
    • 3
  1. 1.School of ScienceNantong UniversityNantongChina
  2. 2.School of Electronics and InformationNantong UniversityNantongChina
  3. 3.School of Electrical EngineeringNantong UniversityNantongChina

Personalised recommendations