Advertisement

Projective Synchronization of Different Chaotic Systems Based on an Adaptive Sliding Mode Controller

  • Jianzhong Guo
  • Shifeng Yang
  • Zhanjun Si
  • Qiang Li
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 129)

Abstract

In this paper, an adaptive sliding mode controller is proposed to control the Chen system with unknown parameters, uncertain terms and external bounded disturbances. Using this controller, we observe projective synchronization between the Chen system and the Liu system.Moreover, it is proven that this control method can really make the two systems globally asymptotically synchronized based on Lyapunov stability theory. Finally, numerical simulations are presented to show the effectiveness of the proposed adaptive sliding mode controller.

Keywords

Chaotic System Slide Mode Control Sliding Mode Mode Controller Projective Synchronization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J., Heagy, J.F.: Chaos 7, 520–543 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Khadra, A., Liu, X.Z., Shen, X.M.: IEEE Trans. on Cir. Sys. I 50, 341–351 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Wei, G.W., Zhao, S.: Phys. Rev. E 65, 056210 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Nagano, S.: Biophys. J. 76, A220 (1999)Google Scholar
  5. 5.
    Meng, J., Wang, X.Y.: Chaos 18, 026102 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Josic, K., Mar, D.J.: Phys. Rev. E 64, 056234 (2001)CrossRefGoogle Scholar
  7. 7.
    Huang, T.W., Li, C.D., Zhang, L.H.: Int. J. Nonlin. Sci. Num. 10, 221–226 (2009)CrossRefGoogle Scholar
  8. 8.
    Lin, W., He, Y.B.: Chaos 15, 023705 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Miao, Q.Y., Tang, Y., Lu, S.J., Fang, J.A.: Nonlinear Dynam. 57, 107–112 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mainieri, R., Rehacek, J.: Phys. Rev. Lett. 82, 3042–3045 (1999)CrossRefGoogle Scholar
  11. 11.
    Xu, D.L., Li, Z.G., Bishop, S.R.: Chaos 11, 439–442 (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Wen, G.L., Xu, D.L.: Phys. Lett. A 333, 420–425 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sudheer, K.S., Sabir, M.: Phys. Lett. A 374, 2017–2023 (2010)CrossRefGoogle Scholar
  14. 14.
    Peng, G.J.: Phys. Lett. A 363, 426–432 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chee, C.Y., Xu, D.L.: Chaos Soliton Fract. 23, 1063–1070 (2005)zbMATHGoogle Scholar
  16. 16.
    Chen, M., Chen, W.H.: Int. J. Adapt. Control Signal Process. 24, 51–64 (2010)zbMATHGoogle Scholar
  17. 17.
    Yang, Y.S., Chang, J.F., Liao, T.L., et al.: Int. J. Nonlin. Sci. Num. 10, 1237–1244 (2009)CrossRefGoogle Scholar
  18. 18.
    Liu, C.X., Liu, T., Liu, L., et al.: Chaos Soliton Fract. 22, 1031–1038 (2004)zbMATHCrossRefGoogle Scholar
  19. 19.
    Chen, G.R., Ueta, T.: Int. J. Bifurcat. Chaos 9, 1465–1466 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Jianzhong Guo
    • 1
  • Shifeng Yang
    • 2
  • Zhanjun Si
    • 1
  • Qiang Li
    • 3
  1. 1.Construction and Management Office of InformationTianjin University of Science and TechnologyTianjinChina
  2. 2.College of Electronic Information and AutomationTianjin University of Science and TechnologyTianjinChina
  3. 3.College of ScienceChina Agricultural UniversityBeijingChina

Personalised recommendations