Amplitude Weighting Method for Beamforming in Far-Field from Uniform Array

Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 127)

Abstract

An amplitude weighting method of forming a specific radiation pattern in far-field was proposed, which is different from the phase-array beamforming. The formula for calculating radiation amplitudes was derived in detail. Numerical results illustrated that radiation pattern with limited distribution can be closed in upon by increasing the number of elements, and it was indicated that the total number of elements can be determined in ratio of the main lobe energy to total radiation energy.

Keywords

beam forming phased-array amplitude weighting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Von Aulock, W.H.: Properties of Phased Arrays. In: IEEE Proceedings of the IRE, vol. 48(10), pp. 1715–1727 (1960)Google Scholar
  2. 2.
    Fenn, A.J., Temme, D.H., Delaney, W.P., et al.: The Development of Phased-Array Radar Technology. Lincoln Laboratory Journal 12(2), 321–340 (2000)Google Scholar
  3. 3.
  4. 4.
  5. 5.
  6. 6.
    Karrer, H.E., Dias, J.F., Larson, J.D., et al.: A Phased Array Acoustic Imaging System for Medical Use. In: IEEE Ultrasonics Symposium, pp. 757–762 (1980)Google Scholar
  7. 7.
    O’Donnell, M., Eberle, M.J., Stephens, D.N., et al.: Synthetic Phased Array Imaging of Coronary Arteries with an Intraluminal Array. In: IEEE Ultrasonics Symposium, pp. 1251–1254 (1995)Google Scholar
  8. 8.
    Robert, J.L., Fink, M.: Green’s function estimation in speckle using the decomposition of the time reversal operator: Application to aberration correction in medical imaging. J. Acoust. Soc. Am., 866–877 (2008)Google Scholar
  9. 9.
    Goss, S.A., Frizzell, L.A., Kouzmanoff, J.T., et al.: Sparse Random Ultrasound Phased Array for Focal Surgery. Ultrasonics, IEEE Transactions on Ferroelectrics and Frequency Control 43(6), 1111–1121 (1996)CrossRefGoogle Scholar
  10. 10.
    Clement, G.T., White, J., Hynynen, K.: Investigation of a large-area phased array for focused ultrasound surgery through the skull. Phys. Med. Biol. 45, 1071–1083 (2000)CrossRefGoogle Scholar
  11. 11.
    Kubota, J., Ogihara, M., Azuma, T., et al.: Real-time monitoring transcranial sub-megahertz ultrasound thrombolysis with phased array scanner. In: IEEE Ultrasonics Symposium, pp. 1716–1719 (2005)Google Scholar
  12. 12.
    Ludwig, R., Roberti, D.: A Nondestructive Ultrasonic Imaging System for Detection of Flaws in Metal Blocks. IEEE Transactions on Instrumentation and Measurement 38(1), 113–118 (1989)CrossRefGoogle Scholar
  13. 13.
    Guz, A.N., Makhort, F.G.: The Physical Fundamentals of the Ultrasonic Nondestructive Stress Analysis of Solids. International Applied Mechanics 36(9), 1119–1149 (2000)CrossRefGoogle Scholar
  14. 14.
    Subramaniam, K.V., Mohsen, J.P., Shaw, C.K., et al.: Ultrasonic Technique for Monitoring Concrete Strength Gain at Early Age. ACI Materials Journal 99(5), 458–462 (2002)Google Scholar
  15. 15.
    Belyaev, A., Polupan, O., Dallas, W., et al.: Crack detection and analyses using resonance ultrasonic vibrations in full-size crystalline silicon wafers. Applied Physics Letters 88(11), 111907-1–1119073-3 (2006)CrossRefGoogle Scholar
  16. 16.
    Mizrach, A.: Ultrasonic technology for quality evaluation of fresh fruit and vegetables in pre-and postharvest processes. Postharvest Biology and Technology 48(3), 315–330 (2008)CrossRefGoogle Scholar
  17. 17.
    Yang, T.-H., Wang, S.-Y., Lin, C.-J., et al.: Evaluation of the mechanical properties of Douglas-fir and Japanese cedar lumber and its structural glulam by nondestructive techniques. Construction and Building Materials 22(4), 487–493 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wang, X.-F., Fan, Y., Tian, W.-C., Kwon, H.-J., Kennerly, S., Claydon, G., May, A.: Development of air-coupled ultrasound transducers for nondestructive evaluation. In: IEEE MEMS, pp. 932–935 (2008)Google Scholar
  19. 19.
    Athanasopoulos, N.C., Uzunoglu, N.K., Kanellopoulos, J.D.: Development of a 10GHz Phased Array Cylindrical Antenna System Incorporating IF Phase Processing. Progress In Electromagnetics Research PIER 59, 17–38 (2006)CrossRefGoogle Scholar
  20. 20.
    Qiao, W., Chen, X., Du, G., et al.: Laboratory simulation on acoustic well-logging with phased array transmitter. ACTA ACUSTICA(English version) 28(2), 116–122 (2003)Google Scholar
  21. 21.
    Wolfson, M.L., Naar, D.F., Howd, P.A., et al.: Multibeam Observations of Mine Burial Near Clearwater, FL, Including Comparisons to Predictions of Wave-Induced Burial. IEEE Journal of Oceanic Engineering 32(1), 103–118 (2007)CrossRefGoogle Scholar
  22. 22.
    Lu, J.-Q., Ju, X.-D.: Study and Design of Cross-dipole Array Acoustic Logging Tool. The First International Forum on Petroleum Sustainable Development for Ph.D. Candidates (English Version)Google Scholar
  23. 23.
    Thomenius, K.E.: Evolution of ultrasound beamformers. In: IEEE Ultrasonics Symposium, vol. 2, pp. 1615–1622 (1996)Google Scholar
  24. 24.
    Modelski, J., Yashchyshyn, Y.: Voltage controlled ferroelectric microstrip antenna for phased-arrays. In: IEEE Antennas and Propagation Society International Symposium, vol. 2, pp. 506–509 (2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Xi’an Institute of Optics and Precision MechanicsChinese Academy of ScienceXi’anChina
  2. 2.School of Information and TechnologyNorthwest UniversityXi’anChina

Personalised recommendations