Complex Dynamics in the Delayed Stochastic AIMD/RED System

  • Xieqiang Mo
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 126)


In the paper, we explore the stochastic bifurcation of the the heterogeneous delayed AIMD/RED system according to the qualitative changes in Invariant measure and stationary probability density of system response. Some new criteria ensuring stability and stochastic bifurcation are obtained.


Equilibrium Point Invariant Measure Hopf Bifurcation Transmission Control Protocol Stochastic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jacobson, V.: Congestion avoidance and control. ACM Computer Communication Review 18, 314–329 (1988)CrossRefGoogle Scholar
  2. 2.
    Kelly, P.: Models for a self-managed Internet. Philos. Trans. Roy. Soc. A 358, 2335–2348 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Hollot, M., Misra, V., Towsley, D., Gong, W.: Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Transactions on Automatic Control 47, 945–959 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Athuraliya, S., Low, S., Yin, Q.: REM: Active queue management. IEEE Network 15, 48–53 (2001)CrossRefGoogle Scholar
  5. 5.
    Wang, L., Cai, L., Liu, X., Shen, X.: Stability and TCP-friendliness of AIMD/RED systems with feedback delays. Computer Networks 51, 4475–4491 (2007)CrossRefGoogle Scholar
  6. 6.
    Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Transations on Networking 1, 397–413 (1993)CrossRefGoogle Scholar
  7. 7.
    Huang, Z., Yang, Q., Cao, J.: The stochastic stability and bifurcation behavior of an Internet congestion control model. Math. Comput. Modelling 54, 1954–1965 (2011)CrossRefGoogle Scholar
  8. 8.
    Li, C., Chen, G., Liao, X.: Hopf bifurcation in an Internet congestion control model. Chaos, Solitons & Fractals 19, 853–862 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Misra, V., Gong, W., Towsley, D.: Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. Computer Communication Review 30, 151–160 (2000)CrossRefGoogle Scholar
  10. 10.
    Kelly, P.: Fairness and stability of end-to-end congestion control. Eur. J. Control 9, 149–165 (2003)CrossRefGoogle Scholar
  11. 11.
    Srikant, R.: The Mathematics of Internet Congestion Control. Birkhäuser (2004)Google Scholar
  12. 12.
    Zheng, Y., Wang, Z.: Stability and Hopf bifurcation of a class of TCP/AQM networks. Nonlinear Analysis: RWA 3, 1552–1559 (2010)CrossRefGoogle Scholar
  13. 13.
    Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Springer, New York (1993)zbMATHGoogle Scholar
  14. 14.
    Arnold, L.: Random Dynamical Systems. Springer, New York (1998)zbMATHGoogle Scholar
  15. 15.
    Namachchivaya, N.: Stochastic bifurcation. Appl. Math. Comput. 38, 101–159 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Zhu, W.: Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation. Science Press, Beijing (2003)Google Scholar
  17. 17.
    Khasminskii, R.: On the principle of averaging for It\(\hat{\hbox{o}}\) stochastic differential equations. Kybernetika(Prague) 4, 260–279 (1968)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsWuzhou UniversityWuzhouP.R. China

Personalised recommendations