A Master-Slave Telesurgery Simulator with Force-Feedback

  • Ping Liu
  • Yongming Xie
  • Tanchao Zhu
  • Jishuai Zhang
  • Jianying Li
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 126)

Abstract

With the advent of surgical robots, telesurgery becomes an exciting new discipline that promises to broaden the practice of expert surgeons. Accordingly surgeons need to learn more sophisticated skills for telesurgery. We proposed a master-slave surgery simulator that can teach skills in controlling telesurgery robots. The simulator consists of master-slave haptic devices and a stereoscopic display. Telesurgery is simulated in a bilateral control scheme with Position–Force control strategy. The performance of the master-slave control in undertaking free space motion is presented and the simulation of burring in spine surgery is implemented. Experiments show the following error of the telesurgery simulator is quite small and the force change during burring simulation is acceptable.

Keywords

master-slave scheme haptic interaction telesurgery simulator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diodato, M., Prosad, S., Klingensmith, M., Damian, R.: Robotics in surgery. Current Problems in Surgery 41, 752–810 (2004)CrossRefGoogle Scholar
  2. 2.
    Woo, R., Peterson, D., Le, D., Gertner, M., Krummel, T.: Robot-Assisted Surgery: Technology and Current Clinical Status. Surgery, Section Eleven, 2355–2371 (2008)Google Scholar
  3. 3.
    Tanaka, H., Ohnishi, K., Nishi, H., Kawai, T.: Bilateral Control in Multi DOF Haptic Surgical Robotic System Utilizing FPGA. Gastrointestinal Endoscopy 72, 593–599 (2010)CrossRefGoogle Scholar
  4. 4.
    Ho, K., Phee, S., Shabbir, A., Low, S., Huynh, V., Kencana, A., Yang, K., Lomanto, D., So, B., Wong, Y., Chung, S.: Endoscopic submucosal dissection of gastric lesions by using a Master and Slave Transluminal Endoscopic Robot (MASTER). Gastrointest Endosc. 72, 593–599 (2010)CrossRefGoogle Scholar
  5. 5.
    Mylonas, G., Kwok, K.: Haptic Constraints and associated Cognitive Demand for Robotic MIS. Medical Image Analysis (2010), doi: 10.1016/j.media.2010.07.007Google Scholar
  6. 6.
    Tavakoli, M., Patel, R., Moallem, M.: A Force Reflective Master-Slave System for Minimally Invasive Surgery. In: Proceedings of the 2003 IEEE/RSJ, Intl. Conference on Intelligent Robots and Systems, Las Vegas, Nevada, pp. 3077–3082 (October 2003)Google Scholar
  7. 7.
    Low, S., Phee, L.: A Review of Master-Slave Robotic Systems for Surgery. In: Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, pp. 37–42 (October 2004)Google Scholar
  8. 8.
    Lau, H., Wai, L.: Implementation of position–force and position–position teleoperator controllers with cable-driven mechanisms. Robotics and Computer-Integrated Manufacturing 21, 145–152 (2005)CrossRefGoogle Scholar
  9. 9.
    Ansara, A., Rodriguesb, D., Desaic, J., Daniilidisa, K., Kumara, V.: Camposd Visual and haptic collaborative tele-presence. Computers & Graphics 25, 789–798 (2001)CrossRefGoogle Scholar
  10. 10.
    Met, V.: A virtual reality simulator for orthopedic basic skills: A design and validation study. J. Biomed. Inform. (2010), doi:10.1016/j.jbi.2010.05.016Google Scholar
  11. 11.
    Arbabtafti, M., Moghaddam, M., Nahvi, A., Mahvash, M., Rahimi, A.: Haptic and visual rendering of virtual bone surgery: A physically realistic voxel-based approach. In: IEEE International Workshop on Haptic Audio visual Environments and Games, pp. 30–35 (2008)Google Scholar
  12. 12.
    Morris, D., Sewell, C., Barbagli, F., Salisbury, K., Blevins, N., Girod, S.: Visuohaptic Simulation of Bone Surgery for Training and Evaluation. IEEE Computer Graphics and Applications 26, 48–57 (2006)CrossRefGoogle Scholar
  13. 13.
    Kenney, P., Wszolek, M., Gould, J., Libertino, J., Moinzadeh, A.: Face, content, and construct validity of dV-Trainer, a novel virtual reality simulator for robotic surgery. Urology 73, 1288–1292 (2009)CrossRefGoogle Scholar
  14. 14.
    Seixas-Mikelus, S., Kesavadas, T., Srimathveeravalli, G., Chandrasekhar, R., Wilding, G., Guru, K.: Face Validation of a Novel Robotic Surgical Simulator. Urology 76, 357–360 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Ping Liu
    • 1
  • Yongming Xie
    • 1
    • 2
  • Tanchao Zhu
    • 1
  • Jishuai Zhang
    • 1
  • Jianying Li
    • 1
  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.Department of Computer Science and EngineeringThe Chinese University of Hong KongHong KongChina

Personalised recommendations