Advertisement

Foreign Language Education Using Classical Transfer-Base Machine Translation Technique

  • Yoshihiko Nitta
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 126)

Abstract

This paper presents the method and technique to realize foreign language education using classical transfer-base machine translation technique.The proposed method is based on some well selected text corpus. The corpus is desirably bilingual, but not restricted to bilingual; mono lingual corpus is still available. The method to use commercial machine translation system(s) to support foreign language learners is also mentioned.

Keywords

Foreign Language Machine Translation Statistical Machine Translation Computational Linguistics Pattern Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentivogli, L., Pianta, E.: Exploiting Parallel Texts in the Creation of Multilingual Semanti-cally Annotated Resources: the MultiSemiCor Corpus. Natural Language Engineering 11(3), 247–261 (2005)CrossRefGoogle Scholar
  2. 2.
    Hornby, A.S.: Guide to Patterns and Usage in English. Oxford University Press (1978) (Japanese Translation: Kenzo Ito. An English Model, Usage. Oxford University Publication Office)Google Scholar
  3. 3.
    Ikehara, S., et al.: Japanese Lexical Compendium, Iwanami Shoten, Tokyo, Japan (1997)Google Scholar
  4. 4.
    Ikehara, S., et al.: Semantically Equivalent Language Transformation Method Based on Analogi-cal Thinking Principle. Journal of Artificial Intelligence Society of Japan (2002) (in Japanese)Google Scholar
  5. 5.
    Kinyon, A.: A Language-Independent Shallow-Parser Compiler. In: Proc. 39th ACL Ann. Meeting (European Chapter), pp. 322–329 (2001)Google Scholar
  6. 6.
    Koehn, P.: Statistical Machine Translation, p. 433. Cambridge University Press (2010)Google Scholar
  7. 7.
    Lehrberger, J.J.: Automatic Translation and the Concept of Sublanguagee, Groupe de Recherché en Tradution Automatique (TAUM), Universite de Montreal, Canada (1978)Google Scholar
  8. 8.
    Lehmann, W.P.: The METAL System. Linguistic Research Center. University of Texas, Texas, USA (1980)Google Scholar
  9. 9.
    Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook, 2nd edn., p. 1285. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  10. 10.
    Marcus, M.P.: A Theory of Syntactic Recognition for Natural Language. The MIT Press (1980)Google Scholar
  11. 11.
    Mihalcea, R., Simard, M.: Parallel Texts. Natural Language Engineering 11(3), 239–246 (2005)CrossRefGoogle Scholar
  12. 12.
    Moon, R.: The Analysis of Meaning. In: Sinclair (ed.), pp. 4:86–4:103 (1987)Google Scholar
  13. 13.
    Nakamura, Y.: How far can we go in translation? Japan Times, Tokyo, Japan (1983)Google Scholar
  14. 14.
    Nitta, Y., et al.: A Heuristic Approach to English-into-Japanese Machine Translation. In: Horecky, J. (ed.) Proc. COLING 1982, Proceedings of the 9th International Conference on Computational Linguistics, Prague, pp. 283–288. North Holland Publishing Company (1982)Google Scholar
  15. 15.
    Nitta, Y., et al.: A Proper Treatment of Syntax and Semantics in Machine Translation. In: Proc. of COLING 1984, Proceedings of the 10th International Conference on Computational Linguistics, Stanford, pp. 159–166. Association for Computational Linguistics (1984)Google Scholar
  16. 16.
    Nitta, Y.: Idiosyncratic Gap: A Tough Problem to Machine Translation. In: Proc. Comp. Linguistics, COLING 1986. ACL (Assoc. Comp. Ling.) (1986)Google Scholar
  17. 17.
    Nitta, Y.: Referential Structure: A Mechanism for Giving Word-Definitions in Ordinary Lexi-cons. In: Language, Information and Computation. LSK (Linguistic Society of Korea) (1993)Google Scholar
  18. 18.
    Nitta, Y.: A Study of Semantic Typology Patterns and their Transformations. Economic Review of Nihon University 71(4), 131–155 (2002a)Google Scholar
  19. 19.
    Nitta, Y.: Problems of Machine Translation: From a Viewpoint of Logical Semantics. Economic Review of Nihon University 72(2), 23–42 (2002b)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Graduate School of General Socio-Informatics StudyNihon University, College of EconomicsChiyodaJapan

Personalised recommendations