Performance of CTC(N) Switch under Various Traffic Models

Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 126)

Abstract

In previous papers, we introduced and analyzed an innovative agile crossbar switch architecture called contention-tolerant crossbar, denoted as CTC(N), only under Bernoulli i.i.d. uniform traffic model. The CTC(N) switch achieves about 63% throughput without any internal speedup and 100% throughput with either speedup of 2 or 2 CTC(N) fabrics operating in parallel. In this paper we evaluate the throughput and mean cell delay of CTC(N) switch under four different traffic models. By simulation, quantitative results are presented, evaluated and compared to traditional crossbar switches.

Keywords

Time Slot Schedule Algorithm Output Port Input Port Cell Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, T.E., Owichi, S.S., Saxe, J.B., Thacker, C.P.: High speed switch scheudling for local area networks. ACM Trans. on Computer Systems 11(4), 319–352 (1993)CrossRefGoogle Scholar
  2. 2.
    Andrews, M., Zhang, L.: Achieving stability in networks of input-queued switches. IEEE/ACM Trans. on Networking 11(5), 848–857 (2003)CrossRefGoogle Scholar
  3. 3.
    Bianco, A., Giaccone, P., Leonardi, E., Neri, F.: A Framework for Differential Frame-Based Matching Algoritms in Input-Queued Switches. In: Proceedings of IEEE International Conference on Computer Communications, Hong Kong, March 7-11 (2004)Google Scholar
  4. 4.
    Chao, H.J.: Saturn: A terabit packet switch using dual round-robin. IEEE Communications Magazine 8(12), 78–84 (2000)CrossRefGoogle Scholar
  5. 5.
    Chao, H.J., Lam, C.H., Oki, E.: Boradband Packet Switching Technologies: A Practical Guide to ATM Switches and IP Routers. Willey, New York (2001)Google Scholar
  6. 6.
    Chen, J., Wang, J., Yu, H., Gumaste, A., Zheng, S.Q.: Fully Distributed Work-Conserving MAC Protocols for Opportunistic Optical Hyperchannels. IEEE Trans. on Communications 57(12), 3691–3702Google Scholar
  7. 7.
    Chen, J., Wang, J., Yu, H., Zheng, S.Q.: Opportunistic optical hyperchannel and its distributed QoS assuring access control. IEEE Trans. on Parallel and Distributed Systems 20(11), 1626–1640 (2009)CrossRefGoogle Scholar
  8. 8.
    Chuang, S.-T., Goel, A., McKeown, N., Prabhakar, B.: Matching output queueing with a combined input output queued switch. IEEE J. on Selected Areas in Communications 17(6), 1030–1039 (1999)CrossRefGoogle Scholar
  9. 9.
    Giaccone, P., Shah, D., Prabhakar, B.: An Implementable Parallel Scheduler for Input-Queued Switches. IEEE Micro 22(1), 19–25 (2002)CrossRefGoogle Scholar
  10. 10.
    He, S.-M., Sun, S.-T., Guan, H.-T., Zheng, Q., Zhao, Y.-Z., Gao, W.: On guaranteed smooth switching for buffered crossbar switches. IEEE/ACM Trans. on Networking 16(3), 718–731 (2008)CrossRefGoogle Scholar
  11. 11.
    Lee, H.-I., Seo, S.-W.: Matching output queueing with a multiple input/output-queued switch. IEEE/ACM Trans. on Networking 14(1), 121–136 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Leonardi, E., Mellia, E., Neri, F., Marsan, M.: On the stability of input-queued switches with speed-up. IEEE/ACM Trans. on Networking 9(1), 104–118 (2001)CrossRefGoogle Scholar
  13. 13.
    Lin, M., McKeown, N.: The throughput of a buffered crossbar switch. IEEE Communications Letters 9(5), 465–467 (2005)CrossRefGoogle Scholar
  14. 14.
    McKeown, N.: The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Trans. on Networking 7(2), 188–201 (1999)CrossRefGoogle Scholar
  15. 15.
    McKeown, N., Mekkittikul, A., Anantharam, V., Walrand, J.: Achieving 100% throughput in an input-queued switch. IEEE Trans. on Communications 47(8), 1260–1267 (1999)CrossRefGoogle Scholar
  16. 16.
    McKcKeown, N., Varaiya, P., Warland, J.: Scheduling cells in an input-queued switch. IEE Electronics Letters 29(25), 2174–2175 (1993)CrossRefGoogle Scholar
  17. 17.
    Qu, G., Chang, H.J., Wang, J., Fang, Z., Zheng, S.Q.: Contention-Tolerant Crossbar Packet Switches without and with Speedup. In: Proceedings of IEEE International Conference on Communications, Cape town, South Afirica, June 23-27 (2010)Google Scholar
  18. 18.
    Qu, G., Chang, H.J., Wang, J., Fang, Z., Zheng, S.Q.: Contention-Tolerant Crossbar Packet Switches. International J. of Communication Systems 24(2), 168–184 (2011)CrossRefGoogle Scholar
  19. 19.
    Rojas-Cessa, R., Oki, E., Chao, H.J.: CIXOB-k: Combined input- and crosspoint-queued switch. IEICE Trans. on Communications E83-B(3), 737–741 (2000)Google Scholar
  20. 20.
    Rojas-Cessa, R., Oki, E., Chao, H.J.: On the combined input-crosspoint buffered switch with round-robin arbitration. IEEE Trans. on Communications 53(11), 1945–1951 (2005)CrossRefGoogle Scholar
  21. 21.
    Rojas-Cessa, R., Oki, E., Jing, Z., Chao, H.J.: CIXB-1: Combined input-ne-cell-crosspoint buffered switch. In: IEEE Workshop on High Performance Switching and Routing, Dallas, May 29-21 (2001)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of Texas at DallasRichardsonUSA
  2. 2.Jilin UniversityChangchunChina

Personalised recommendations