Satellite Attitude Prediction

  • Rudrapatna V. Ramnath
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Attitude prediction of spacecraft is an important area in space flight requiring rapid and accurate methods of computation. We will now present an elaborate application in space flight to illustrate the computational benefits of asymptotic solutions. The application involves the attitude prediction of satellites orbiting the earth and is based on [1–3].


Space Flight Multiple Time Scale Attitude Motion External Torque Slow Time Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. C. Tao, R. V. Ramnath, Satellite Attitude Prediction by Multiple Time Scales, in Proceedings of NASA Flight Mechanics and Estimation Theory Symposium, Goddard Space Flight Center, Oct 1975. Also C.S. Draper Lab. Rept. R-930 (Cambridge, MA, Dec 1975)Google Scholar
  2. 2.
    Y. C. Tao, R. V. Ramnath, On the Attitude Motion of an Orbiting Rigid Body Under the Influence of Gravity Gradient Torque, in Proceedings AIAA Astrodynamics Conference (Palo Alto, 1978)Google Scholar
  3. 3.
    Y. C. Tao, R. V. Ramnath, Design of A Magnetic Attitude Control by an Asymptotic Method, in Proceedings of AIAA Astrodynamics Conference, Sept 1977, ed. by W. Y. Jackson. Also Report P-1138, The Charles Stark Draper Laboratory (Cambridge, MA, July 1980)Google Scholar
  4. 4.
    R. V. Ramnath, A Multiple Scales Approach to the Analysis of Linear Systems, USAFFDL-TR-68-60, Wright-Patterson AFB, OH, 1960, also R.V. Ramnath, G. Sandri, A Generalized Multiple Scales Approach to a Class of Linear Differential Equations, J. Math. Anal. Appl. 28 (1969)Google Scholar
  5. 5.
    Y. C. Tao, Satellite Attitude Prediction by Multiple Scales. Sc D Dissertation Massachusetts Institute of Technology (Cambridge, MA, 1979)Google Scholar
  6. 6.
    L. Poinsot, Theorie Nouvelles de la Rotation des Corps. J. Math. Pures Appl. Paris (1851)Google Scholar
  7. 7.
    G. Kirchhoff, Vorlesungen ueber Mechanik. 4, Aufl., Leipzig: b.g. Teubner (1897)Google Scholar
  8. 8.
    F. Klein, S. Sommerfeld, Theorie des Kreises, ed. by Druck, Verlag von B. G. Teubner (1898), pp. 475–484.Google Scholar
  9. 9.
    H. Morton, J. Junkins, J. Blanton, Analytical Solutions for Euler Parameters. Celestial Mech. 10, 387–301 (1974)CrossRefMathSciNetGoogle Scholar
  10. 10.
    E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge University Press, New York, 1965)Google Scholar
  11. 11.
    R. H. Battin, Astronautical Guidance (McGraw-Hill, New York, 1974)Google Scholar
  12. 12.
    G. Floquet, Sur les Equations Differentialles Linéares á Coefficients Périodiques. Ann. Scientifiques de l’Ecole Normale Superiere Sup 2(12), 47–88 (1883)Google Scholar
  13. 13.
    R. W. Brockett, Finite Dimensional Linear Systems (Wiley, New York, 1970)Google Scholar
  14. 14.
    P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren der Mathematischen Wissenschaften in Einstelldarstellungen Band 67Google Scholar
  15. 15.
    M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions. Nat. Bur. Stand., Appl. Math. Series (Washington DC)Google Scholar
  16. 16.
    M. L. Renard, Command Laws for Magnetic Attitude Control of Spin-Stabilized Earth Satellites. J. Spacecr. Rockets 4(2), 156 (1967)CrossRefGoogle Scholar
  17. 17.
    W. Lindorfer, L. Muhlfelder, Attitude and Spin Control for TIROS Wheel, in Proceedings of the AIAA Guidance and Control Conference (1966)Google Scholar
  18. 18.
    P. C. Wheeler, Spinning Spacecraft Attitude Control via the Environmental Magnetic Field. J. Spacecr. Rockets 4(12), 1631 (1967)CrossRefGoogle Scholar
  19. 19.
    J. A. Sorensen, A Magnetic Attitude Control System for an Axisymmetric Spinning Spacecraft. 8(5), 441 (1971)MathSciNetGoogle Scholar
  20. 20.
    M. Shigehara, Geomagnetic Attitude Control of an Axisymmetric Spinning Satellite. J. Spacecr. Rockets 9(6), 391 (1972)CrossRefGoogle Scholar
  21. 21.
    T. H. Go, R. V. Ramnath, Geomagnetic Attitude Control of Satellites Using Generalized Multiple Scales. AIAA J. Guid. Control Dyn. 20(4), 690–698   (1997)CrossRefzbMATHGoogle Scholar
  22. 22.
    K. T. Alfriend, Magnetic Attitude Control System for Dual-Spin Satellites. AIAA J. 13(6), 817 (1975)CrossRefzbMATHGoogle Scholar
  23. 23.
    J. R. Wertz (eds), Spacecraft Attitude Determination and Control : Appendix H (D Reidel Publishing Co, Dordrecht, 1978)Google Scholar
  24. 24.
    R. V. Ramnath, Minimal and Subminimal Simplification. AIAA J. Guid. Control Dyn. 3(1), 86–89 (1980)CrossRefGoogle Scholar
  25. 25.
    G. Floquet, Annales de l’Ecole Normale Superiere 12(2), 47 (1883)Google Scholar
  26. 26.
    Ince, Ordinary Differential Equations (Dover, New York, 1956)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations