Computation

Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Very often, the ability to generate quantitative information on specific systems is central to the analysis and design in the investigation of science and engineeringsystems. Applied analysts and designers of complex systems rely heavily on numerical solutions to the mathematical models representing a given physical system under study. This leads to the task of computation, which must be accurate and efficient.

Keywords

Flight Vehicle Rigid Body Mode Complex Engineering System Multiple Time Scale Method Multiple Scale Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. O. Friedrichs, Asymptotic phenomena in mathematical physics. Bull. Amer. Math. Soc. 61, 485–504 (1955)Google Scholar
  2. 2.
    R. V. Ramnath, G. Sandri, A generalized multiple scales approach to a class of linear differential equations. J. Math. Anal. Appl. 28, 339–364 (1969). Also in Zentralblatt füur Mathematik (Berlin, Germany, 1970). Also in Proceedings SIAM National Meeting (Washington, 1969) JuneGoogle Scholar
  3. 3.
    R. V. Ramnath, V. Rudrapatna, J. K. Hedrick, H. M. Paynter, (eds.), Nonlinear System Analysis and Synthesis: Vol. 2—Techniques and Applications (ASME, New York, 1980)Google Scholar
  4. 4.
    J. M. Borwein, P. B. Borwein, Ramanujan and PI (Scientific American, New York, 1988) FebruaryGoogle Scholar
  5. 5.
    I. Peterson, (1987) The Formula Man, Science News, vol. 131, April 25, 1987Google Scholar
  6. 6.
    J. Stirling, Methodus Differentialis (Springer, London, 1730)Google Scholar
  7. 7.
    H. Poincaré, Les Methodes Nouvelles de la Mecanique Celeste (Gauthier-Villars, Paris, 1899). Also (Dover, New York, 1957)Google Scholar
  8. 8.
    H. Poincaré, Acta. Math. 8, 295–344 (1886)Google Scholar
  9. 9.
    Th. Stieltjes, Ann. de l’Éc. Norm. Sup. 3(3), 201–258 (1886)MathSciNetGoogle Scholar
  10. 10.
    The Boston Globe, Dec 7, 2002Google Scholar
  11. 11.
    Srinivasa Rao (1998) Srinivasa Ramanujan, A Mathematical Genius, (East West Books (Madras) Pvt. Ltd., Madras, 1998)Google Scholar
  12. 12.
    C. Hermite, Sur la resolution de l’équation du cinquéme degré. Comptes Rendus, 48(I), 508 (1858). Also Oeuvres, 2, (1908)Google Scholar
  13. 13.
    A. Erdelyi, Asymptotic Expansions (Dover, New York, 1956)MATHGoogle Scholar
  14. 14.
    E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, (Cambridge University Press, Dover, 1927Google Scholar
  15. 15.
    M. J. Lighthill, A technique for rendering approximate solutions to physical problems uniformly valid. Phil. Mag. 40(7), 1179–1201 (1949)Google Scholar
  16. 16.
    M. Van Dyke, Asymptotic Expansions (Dover, New York, 1956)Google Scholar
  17. 17.
    R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation (Academic Press, New York, 1973)Google Scholar
  18. 18.
    N. N. Bogoliubov, Y. Bogoliubov Mitropolsky, Asymptotic Methods in Nonlinear Oscillations (Dover, NY, 1956)Google Scholar
  19. 19.
    E. T. Bell, Men of Mathematics (Simon and Schuster, New York, 1937)MATHGoogle Scholar
  20. 20.
    M. D. Kruskal, Asymptotology, MATT-160 (Princeton University, Plasma Physics Laboratory, Princeton, 1962)Google Scholar
  21. 21.
    W. Eckhaus, Asymptotic Analysis of Singular Perturbations (North-Holland Publishing Co., New York, 1979)MATHGoogle Scholar
  22. 22.
    J. Cole, Perturbation Methods in Applied Mathematics (Blaisdell, Waltham, 1968)MATHGoogle Scholar
  23. 23.
    E. T. Whittaker, G. N. Watson, A Course of Modern Analysis (Cambridge University Press, Dover, 1927)Google Scholar
  24. 24.
    R. V. Ramnath, A new analytical approximation for the Thomas-Fermi model in atomic physics. J. Math. Anal. Appl. 31(2), 285–296 (1970)CrossRefMathSciNetGoogle Scholar
  25. 25.
    R. V. Ramnath, On a class of nonlinear differential equations of astrophysics. J. Math. Anal. Appl. 35, 27–47 (1971)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    R. V. Ramnath, (1968) A multiple scales approach to the analysis of linear systems, Ph.D. dissertation, Princeton University, 1968. Also published as Report AFFDL-TR-68-60, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, Oct 1968.Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations