Pricing American Options in an Infinite Activity Lévy Market: Monte Carlo and Deterministic Approaches Using a Diffusion Approximation

  • Lisa J. Powers
  • Johanna Nešlehová
  • David A. Stephens
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 12)


Computational methods for pricing exotic options when the underlying is driven by a Lévy process are prone to numerical inaccuracy when the driving price process has infinite activity. Such inaccuracies are particularly severe for pricing of American options. In this chapter, we examine the impact of utilizing a diffusion approximation to the contribution of the small jumps in the infinite activity process. We compare the use of deterministic and stochastic (Monte Carlo) methods, and focus on designing strategies tailored to the specific difficulties of pricing American options. We demonstrate that although the implementation of Monte Carlo pricing methods for common Lévy models is reasonably straightforward, and yield estimators with acceptably small bias, deterministic methods for exact pricing are equally successful but can be implemented with rather lower computational overhead. Although the generality of Monte Carlo pricing methods may still be an attraction, it seems that for models commonly used in the literature, deterministic numerical approaches are competitive alternatives.


CGMY process Finite element method Galerkin method Lévy process Monte Carlo least squares option pricing 



Nešlehová and Stephens acknowledge the support of Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants. Nešlehová also acknowledges the support of an FQRNT Nouveau Chercheur grant.


  1. 1.
    A. Almendral and C. W. Oosterlee, Accurate evaluation of European and American options under the CGMY process, SIAM J. Sci. Comput. 29 (2007), no. 1, 93–117 (electronic).Google Scholar
  2. 2.
    D. Applebaum, Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, vol. 93, Cambridge University Press, Cambridge, 2004.Google Scholar
  3. 3.
    S. Asmussen and J. Rosiński, Approximations of small jumps of Lévy processes with a view towards simulation, J. Appl. Probab. 38 (2001), no. 2, 482–493.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    A. Bensoussan and J.-L. Lions, Impulse control and quasivariational inequalities, Gauthier-Villars, Montrouge, 1984, Translated from the French by J. M. Cole.Google Scholar
  5. 5.
    P. Carr, H. Geman, D. Madan, and M. Yor, The fine structure of asset returns: An empirical investigation, Journal of Business 75 (2002), 305–332.CrossRefGoogle Scholar
  6. 6.
    E. Clement, D. Lamberton, and P. Protter, An analysis of a least squares regression method for American option pricing, Finance and Stochastics 6 (2002), 449–471.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    R. Cont and P. Tankov, Financial modelling with jump processes, Chapman & Hall/CRC, Boca Raton, FL, 2004.MATHGoogle Scholar
  8. 8.
    R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models, SIAM J. Numer. Anal. 43 (2005), no. 4, 1596–1626 (electronic).Google Scholar
  9. 9.
    C. W. Cryer, The solution of a quadratic programming problem using systematic overrelaxation, SIAM J. Control 9 (1971), 385–392.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    T. S. Ferguson and M. J. Klass, A representation of independent increment processes without Gaussian components, The Annals of Mathematical Statistics 43 (1972), no. 5, pp. 1634–1643.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    C. Fries, Mathematical finance: Theory, modeling, implementation, John Wiley, 2007.Google Scholar
  12. 12.
    M. Fu, S. Laprise, D. Madan, Y. Su, and R. Wu, Pricing American options: a comparison of Monte Carlo simulation approaches, Journal of Computational Finance 2 (1999), 49–74.Google Scholar
  13. 13.
    J. M. Harrison, R. Pitbladdo, and S. M. Schaefer, Continuous price processes in frictionless markets have infinite variation, The Journal of Business 57 (1984), no. 3, pp. 353–365.CrossRefGoogle Scholar
  14. 14.
    K. H. F. Kan, R. M. Reesor, T. Whitehead, and M. Davison, Correcting the Bias in Monte Carlo Estimators of American-style Option Values, Monte Carlo and Quasi-Monte Carlo Methods 2008 (P. L’Ecuyer and A. B. Owen, eds.), Springer Berlin Heidelberg, 2009,  10.1007/978-3-642-04107-5 28, pp. 439–454.
  15. 15.
    F. Longstaff and E. Schwartz, Valuing American options by simulation: a simple least-squares approach, Review of Financial Studies 14 (2001), no. 1,, 113–147.
  16. 16.
    R. Lord, F. Fang, F. Bervoets, and C. W. Oosterlee, The CONV Method For Pricing Options, Proceedings of the International Congress on Industrial and Applied Mathematics (ICIAM, 2007), vol. 7, PAMM: Proceedings in Applied Mathematics and Mechanics, no. 1, Wiley, January 2008, pp. 1024003 – 1024004.Google Scholar
  17. 17.
    D. Madan and M. Yor, CGMY and Meixner Subordinators are Absolutely Continuous with respect to One Sided Stable Subordinators, ArXiv Mathematics e-prints (2006), arXiv:math/0601173.Google Scholar
  18. 18.
    A.-M. Matache, P.-A. Nitsche, and C. Schwab, Wavelet Galerkin pricing of American options on Lévy driven assets, Quant. Finance 5 (2005), no. 4, 403–424.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    D. Nualart and W. Schoutens, Backward stochastic differential equations and Feynman-Kac formula for Lévy processes, with applications in finance, Bernoulli 7 (2001), no. 5, 761–776.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    J. Poirot and P. Tankov, Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes, Asia-Pacific Financial Markets 13 (2006), 327–344, 10.1007/s10690-007-9048-7.MATHCrossRefGoogle Scholar
  21. 21.
    L. Powers, Numerical Study of Small-Jump Regularization on Exotic Contracts in Lévy Markets, Master’s thesis, The Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, 2009.Google Scholar
  22. 22.
    S. Raible, Lévy Processes in Finance: Theory, Numerics, and Empirical Facts, Ph.D. thesis, Albert-Ludwigs-Universität, 2000.Google Scholar
  23. 23.
    N. Rambeerich, D. Y. Tangman, and M. Bhuruth, Numerical pricing of American options under infinite activity Lévy processes, Journal of Futures Markets (2010), n/a–n/a.Google Scholar
  24. 24.
    J. Rosiński, Series representations of Lévy processes from the perspective of point processes, Lévy processes: Theory and Applications (O. E. Barndorff-Nielsen, T. Mikosch, and S. I. Resnick, eds.), Springer, 2001, pp. 401–421.Google Scholar
  25. 25.
    K.-i. Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999, Translated from the 1990 Japanese original, Revised by the author.Google Scholar
  26. 26.
    W. Schoutens, Lévy processes in finance: Pricing financial derivatives, John Wiley, Chichester, UK., 2003.Google Scholar
  27. 27.
    M. Signahl, On error rates in normal approximations and simulation schemes for Lévy processes, Stochastic Models 19 (2003), no. 3, 287–298.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    I. Wang, J. W. I. Wan, and P. A. Forsyth, Robust numerical valuation of European and American options under the CGMY process, The Journal of Computational Finance 10 (2007), 31–69.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lisa J. Powers
    • 1
  • Johanna Nešlehová
    • 1
  • David A. Stephens
    • 1
  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontréalCanada

Personalised recommendations