Advertisement

Applications of Sound Field Synthesis

  • Jens Ahrens
Chapter
Part of the T-Labs Series in Telecommunication Services book series (TLABS)

Abstract

Based on the theory developed in the previous chapters, applications of sound field synthesis are presented that allow, e.g., for the synthesis of virtual sound sources with complex radiation properties, focused sources, spatially extended sources, moving sources, and alike. Other practical aspects like the storage and transmission of content for sound field synthesis are discussed. It is shown that both model-based as well as data-based representations of spatial audio content can be reproduced by any of the methods treated. A major part of the treatment is dedicated to the reproduction of Ambisonics-encoded sound fields in Wave Field Synthesis. Finally, aspects of the creation of reverberation in sound field synthesis are outlined.

Keywords

Sound Source Sound Field Microphone Array Virtual Source Driving Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abramowitz, M., Stegun, I.A (eds) (1968). Handbook of mathematical functions., New York: Dover Publications Inc.Google Scholar
  2. Ahrens, J., & Spors, S. (2007, October). Implementation of directional sources in wave field synthesis. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) (pp. 66–69).Google Scholar
  3. Ahrens, J., & Spors, S. (2008a, March/April). Analytical driving functions for higher order ambisonics. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).Google Scholar
  4. Ahrens, J., & Spors, S. (2008b, May). Focusing of virtual sound sources in higher order Ambisonics. In 124th Convention of the AES (p. 7378).Google Scholar
  5. Ahrens, J., & Spors, S. (2008c, March). Notes on rendering focused directional virtual sound sources in wave field synthesis. In 34. Jahrestagung der Deutschen Gesellschaft für Akustik (DAGA).Google Scholar
  6. Ahrens, J., & Spors, S. (2008d, May). Reproduction of moving virtual sound sources with special attention to the Doppler effect. In 124th Convention of the AES.Google Scholar
  7. Ahrens, J., & Spors, S. (2009a, May). Alterations of the temporal spectrum in high-resolution sound field reproduction of varying spatial bandwidths. In 126th Convention of the AES (p. 7742).Google Scholar
  8. Ahrens, J., & Spors, S. (2009b ,June). Spatial encoding and decoding of focused virtual sound sources. In Ambisonics Symposium.Google Scholar
  9. Ahrens, J., & Spors, S. (2010, March). An analytical approach to 2.5D sound field reproduction employing linear distributions of non-omnidirectional loudspeakers. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 105–108.Google Scholar
  10. Ahrens, J., & Spors, S. (2011a) Wave Field Synthesis of Moving Virtual Sound Sources With Complex Radiation Properties. JASA (accepted for publication)Google Scholar
  11. Ahrens, J., & Spors, S. (2011b, October). Two physical models for spatially extended virtual sound sources. In 131st Convention of the AES.Google Scholar
  12. Ahrens, J., & Spors, S. (2011c). Wave field synthesis of a sound field described by spherical harmonics expansion coefficients. JASA. accepted for publication.Google Scholar
  13. Ajdler, T., Faller, C., Sbaiz, L., & Vetterli, M. (2008). Sound field analysis along a circle and its applications to HRTF interpolation. JAES, 56(3), 156–275.Google Scholar
  14. Algazi, V.R., Duda, R.O., Thompson, D.M., & Avendano, C. (2001, October). The CIPIC HRTF database. In IEEE workshop on applications of signal processing to audio and electroacoustics (pp. 99–102).Google Scholar
  15. Allen, J.B., & Berkley, D.A. (1979). Image method for efficiently simulating small-room acoustics. JASA, 65(4), 943–948.Google Scholar
  16. Arfken, G., & Weber, H. (2005). Mathematical methods for physicists (6 ed.). San Diego: Elsevier Academic Press.Google Scholar
  17. Barron, M. (1971). The subjective effects of first reflections in concert halls - the need for lateral reflections. Journal of Sound and Vibration, 15(4), 475–494.CrossRefGoogle Scholar
  18. Beranek, L.L. (2008). Concert hall acoustics—2008. JAES, 56(7/8), 532–544.Google Scholar
  19. Blackstock, D.T. (2000). Fundamentals of physical acoustics., New York: Wiley.Google Scholar
  20. Blauert, J. (1997). Spatial hearing., New York: Springer.Google Scholar
  21. Blauert, J., & Lindemann, W. (1986a). Auditory spaciousness: Some further psychoacoustic analyses. JASA, 80(2), 533–542.Google Scholar
  22. Blauert, J., & Lindemann, W. (1986b). Spatial mapping of intracranial auditory events for various degrees of interaural coherence. JASA, 79(3), 806–813.Google Scholar
  23. Boone, M., Horbach, U., & de Bruijn, W. (1999, May). Virtual surround speakers with wave field synthesis. In 106th Convention of the AES.Google Scholar
  24. Boone, M.M., Cho, W.-H., & Ih, J.-G. (2009). Design of a highly directional endfire loudspeaker array. JAES, 57(5), 309–325.Google Scholar
  25. Bradley, J.S., & Soulodre, G.A. (1995). The influence of late arriving energy on spatial impression. JASA, 97(4), 2263–2271.Google Scholar
  26. Bradley, J.S., & Soulodre, G.A. (1995). Objective measures of listener envelopment. JASA, 98(5), 2590–2597.Google Scholar
  27. Bronkhorst, A.W. (1999). Auditory distance perception in rooms. Nature, 397, 517–520.CrossRefGoogle Scholar
  28. Bronkhorst, A.W., & Houtgast, T. (1999). Auditory distance perception in rooms. Nature, 397(6719), 517–520.CrossRefGoogle Scholar
  29. Brungart, D.S., Durlach, N.I., & Rabinowitz, W.M. (1999). Auditory localization of nearby sources II localization of a broadband source. JASA, 106(4), 1956–1968.Google Scholar
  30. Byerly, W.E. (1959). An elementary treatise on Fourier Series and spherical, cylindricaland ellipsoidal hamonics, with applications to problems in mathematical physics., New York: Dover Publications Inc.Google Scholar
  31. Caulkins, T., & Warusfel, O. (2006, May). Characterization of the reverberant sound field emitted by a wave field synthesis driven loudspeaker array. In 120th Convention of the AES (p. 6712).Google Scholar
  32. Chomyszyn, J. (1995). Distance of sound in reverberant fields. PhD thesis, CCRMA, Stanford University.Google Scholar
  33. Corteel, E. (2007). Synthesis of directional sources using wave field synthesis, Possibilities and Limitations. EURASIP Journal on Advances in Signal Processing, Article ID 90509.Google Scholar
  34. Daniel, J. (2001). Représentation de champs acoustiques, application á la transmission et á la reproduction de sc‘enes sonores complexes dans un contexte multimédia [Representations of Sound Fields, Application to the Transmission and Reproduction of Complex Sound Scenes in a Multimedia Context]. PhD thesis, Université Paris 6. text in French.Google Scholar
  35. Daniel, J. (2003, May). Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, New ambisonic format. In 23rd International Conference of the AES.Google Scholar
  36. Daniel, J., Rault, J.-B., & Polack, J.-D. (1998). Ambisonics encoding of other audio formats for multiple listening conditions. In 105th Convention fo the AES (p. 4795)Google Scholar
  37. Daniel, J., & Moreau, S. (2004). Further study of sound field coding with higher order ambisonics. In 116th Convention of the AES.Google Scholar
  38. de Vries, D. (2009). Wave field synthesis. AES monograph, New York: AES.Google Scholar
  39. de Brujin, W. (2004). Application of wave field synthesis in videoconferencing. PhD thesis, Delft University of Technology.Google Scholar
  40. de Vries, D., Reijnen, A. J., & Schonewille, M.A. (1994). The wave field synthesis concept applied to generation of reflections and reverberation. In 96th Convention of the AES.Google Scholar
  41. Doppler, C. (1842). Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels [On the colored light of double stars and some other stars of the sky]. Abhandlungen der königlichen böhmischen Gesellschaft der Wissenschaften, 2, 465–482. text in German.Google Scholar
  42. Duraiswami, R., Zotkin, D.N., & Gumerov, N.A. (2004, May). Interpolation and range extrapolation of HRTFs. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 45-48).Google Scholar
  43. Duraiswami, R., Zotkin, D. N., Li, Z., Grassi, E., Gumerov, N.A., & Davis, L.S. (2005, October). High Order spatial audio capture and its binaural head-tracked playback over headphones with HRTF cues. In 119th Convention of the AES (p. 6540).Google Scholar
  44. Fazenda, J. (2004). Perception of room modes in critical listening spaces. PhD thesis, University of Salford.Google Scholar
  45. Fazi, F. (2010). Sound field reproduction. Ph.D. thesis, University of Southampton.Google Scholar
  46. Franck, A. (2008). Efficient algorithms and structures for fractional delay filtering based on Lagrange interpolation. JAES, 56(12), 1036–1056.Google Scholar
  47. Franck, A., Gröfe, A., Korn, T., & Strau, M. (2007, September). Reproduction of moving virtual sound sources by wave field synthesis: An analysis of artifacts. In 32nd International Conference of the AES.Google Scholar
  48. Geier, M., Spors, S., & Ahrens, J. (2008, May). The Soundscape Renderer: A unified spatial audio reproduction framework for arbitrary rendering methods. In 124th Convention of the AES.Google Scholar
  49. Geier, M., Ahrens, J., & Spors, S. (2010). Object-based audio reproduction and the audio scene description format. Organised Sound, 15(3), 219–227.CrossRefGoogle Scholar
  50. Geier, M., Wierstorf, H., Ahrens, J., Wechsung, I., Raake, A., & Spors, S. (2010, May). Perceptual evaluation of focused sources in wave field synthesis. In 128th Convention of the AES (p. 8069).Google Scholar
  51. Gerzon, M.A. (1973). Periphony: With-height sound reproduction. JAES, 21, 2–10.Google Scholar
  52. Gerzon, M. (1974). Surround sound psychoacoustics. Wireless World, 80, 483–486 (March).Google Scholar
  53. Gerzon, M.A. (1992). Psychoacoustic decoders for multispeaker stereo and surround sound. In 93rd Convention fo the AES (p. 3406).Google Scholar
  54. Girod, B., Rabenstein, R., & Stenger, A. (2001). Signals and systems., New York: Wiley.Google Scholar
  55. Griesinger, D. (1997). The psychoacoustics of apparent source width, spaciousness and envelopment in performance spaces. Acustica, 83(4), 721–731.Google Scholar
  56. Gumerov, A.N., & Duraiswami, R. (2004). Fast multipole methods for the Helmholtz equation in three dimensions., Amsterdam: Elsevier.Google Scholar
  57. Hahn, N., Choi, K., Chung, H., & Sung, K.-M. (2010, May). Trajectory sampling for computationally efficient reproduction of moving sound sources. In 128th Convention of the AES.Google Scholar
  58. Hannemann, J., & Donohue, K.D. (2008). Virtual sound source rendering using a multipole-expansion and method-of-moments approach. JAES, 56(6), 473–481.Google Scholar
  59. Horbach, U., & Boone, M. (2000, February). Practical implementation of databased wave field reproduction system. In 108th Convention of the AES.Google Scholar
  60. Hulsebos, E. (2004). Auralization using wave field synthesis. PhD Thesis, Delft University of Technology.Google Scholar
  61. Izhaki, R. (2007). Mixing audio-concepts practices and tools., Oxford: Focal Press.Google Scholar
  62. Jackson, L. (2000). A correction to impulse invariance. IEEE Signal Processing Letters, 7, 273–275 (October).CrossRefGoogle Scholar
  63. Jackson, J.D. (1998). Classical electrodynamics (3 ed.). New York: Wiley.Google Scholar
  64. Jot, J. M., Cerveau, L., & Warusfel, O. (1997, October). Analysis and synthesis of room reverberation based on a statistical time-frequency model. In 103rd Convention of the AES.Google Scholar
  65. Karjalainen, M., Antsalol, P., Mäkivirta, A., & Välimäki, V. (2004, May). Perception of temporal decay of low frequency room modes. In 116th Convention of the AES.Google Scholar
  66. Kay, S.M. (1988). Modern spectral estimation., NJ: Englewood Cliffs, Prentice- Hall.zbMATHGoogle Scholar
  67. Kirkeby, O., & Nelson, P.A. (1993). Reproduction of plane wave sound fields. JASA, 94(5), 2992–3000.Google Scholar
  68. Kuhn, C., Pellegrini, R., Leckschat, D., & Corteel, E. (2003, October). An approach to miking and mixing of music ensembles using wave field synthesis. In 115th Convention of the AES (p. 5929).Google Scholar
  69. Kuttruff, H. (2009). Room Acoustics (5th ed.). London: Spon Press.Google Scholar
  70. Laakso, T.I, Välimäki, V., Karjalainen, M., & Laine, U.K. (1996). Splitting the unit delay. IEEE Signal Processing Magazine, 13, 30–60 (January).CrossRefGoogle Scholar
  71. Laitinen, M.-V., Pihlajamäki, T., Erkut, C., & Pulkki, V. (2011) Parametric timefrequency representation of spatial sound in virtual worlds. submitted to ACM Transactions on Applications Perception.Google Scholar
  72. Leppington, F.G., & Levine, H. (1987). The sound field of a pulsating sphere in unsteady rectilinear motion. Proceedings of the Royal Society of London Series A , 412, 199–221.MathSciNetzbMATHCrossRefGoogle Scholar
  73. Lindau, A., Kosanke, L., & Weinzierl, S. (2010 May). Perceptual evaluation of physical predictors of the mixing time in binaural room impulse responses. In 128th Convention of the AES.Google Scholar
  74. Lokki, T. (2002). Physically-based auralization—design, implementation, and evaluation. PhD thesis, Helsinki University of Technology.Google Scholar
  75. Mandel, l., & Wolf, E. (1995). Optical coherence and quantum optics., Cambridge: Cambridge University Press.Google Scholar
  76. Meesawat, K., & i, D. Hammershø. (2003 October). The time when the reverberant tail in binaural room impulse response begins. In 115th Convention of the AES.Google Scholar
  77. Melchior, F. (2011). Investigations on spatial sound design based on measured room impulses. PhD thesis, Delft University of Technology.Google Scholar
  78. Melchior, F., Sladeczek, C., de Vries, D., & Fröhlich, B. (2008, May). User- dependent optimization of wave field synthesis reproduction for directive sound fields. In 124th Convention of the AES.Google Scholar
  79. Melchior, F., & Spors, S. (2010). Spatial audio reproduction: from theory to production. In tutorial, 129th Convention of the AES, San Francisco, CA, USA.Google Scholar
  80. Menzies, D. (2007). Ambisonic synthesis of complex sources. JAES, 55(10), 864–876.Google Scholar
  81. Menzies, D. (2008). Nearfield binaural synthesis report. In Acoustics 08.Google Scholar
  82. Menzies, D. 2009 (June). Calculation of near-field head related transfer functions using point source representations. In Ambisonics Symposium (pp. 23–28).Google Scholar
  83. Merimaa, J. (2006). Analysis, synthesis, and perception of spatial sound - binaural localization modeling and multichannel loudspeaker reproduction. PhD thesis, Helsinki University of Technology.Google Scholar
  84. Meyer, J., & Elko, G. (2002, May). A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).Google Scholar
  85. Moreau, S., Daniel, J., & Bertet, S. (2006, May). 3D Sound field recording with higher order Ambisonics - objective measurements and validation of a 4th order spherical microphone. In 120th Convention of the AES (p. 6857).Google Scholar
  86. Morse, P.M., & Ingard, K.U. (1968). Theoretical acoustics., New York: McGraw-Hill Book Company.Google Scholar
  87. Nogués, M., Corteel, E., & Warusfel, O. (2003, September). Monitoring distance effect with wave field synthesis. In 6th International Conference on Digital Audio Effects (DAFx).Google Scholar
  88. Noisternig, M., Sontacchi, A., Musil, T., & Höldrich, R. (2003, June). A 3D Ambisonics based binaural sound reproduction system. In 24th AES International Conference.Google Scholar
  89. Oldfield, R., Drumm, I., & Hirst, J. (2010, May). The perception of focused sources in wave field synthesis as a function of listener angle. In 128th Convention of the AES.Google Scholar
  90. Peters, N., Place, T., & Lossius, T. (2009). SpatDIF-Spatial Sound. Description Interchange Format. http://spatdif.org.
  91. Peters, N., Marentakis, G., & McAdams, S. (2011). Current technologies and compositional practices for spatialization: A qualitative and quantitative analysis. Computer Music Journal, 35(1), 10–27.CrossRefGoogle Scholar
  92. Poletti, M.A. (1996). The design of encoding functions for stereophonic and polyphonic sound systems. JAES, 44(11), 948–963.Google Scholar
  93. Pomberger, H. (2008). Angular and radial directivity control for spherical loudspeaker arrays. M. Sc. thesis, IEM Graz.Google Scholar
  94. Pomberger, H., & Zotter, F. (2009, June). An Ambisonics format for flexible playback layouts. In Ambisonics Symposium.Google Scholar
  95. Pulkki, V. (2007). Spatial sound reproduction with Directional Audio Coding. JAES, 55(6), 503–516.Google Scholar
  96. Pulkki, V. (2010, October). New spatial audio coding methods based on time- frequency processing. In Workshop presented at the 40th Conference of the AES.Google Scholar
  97. Rabenstein, R., Spors S. (2007). Multichannel sound field reproduction. In J. Benesty, M. Sondhi, & Y. Huang (Eds.), Springer handbook on speech processing and speech communication (pp. 1095–1114). Berlin: Springer.Google Scholar
  98. Rafaely, B. (2004). Plane-wave decomposition of the sound field on a sphere by spherical convolution. JASA, 116(4), 2149–2157.Google Scholar
  99. Rafaely, B. (2005). Analysis and design of spherical microphone arrays. IEEE Transactions on Speech and Audio Process, 13(1), 135–143.CrossRefGoogle Scholar
  100. Rafaely, B., Weiss, B., & Bachmat, E. (2007). Spatial aliasing in spherical microphone arrays. IEEE Transactions on Signal Processing, 55(3), 1003–1010.MathSciNetCrossRefGoogle Scholar
  101. Reilly, A., McGrath, D., & Dalenbäck, B.-I. (1995, October). Using auralisation for creating animated 3-D sound fields across multiple speakers. In 99th Convention of the AES (p. 4127).Google Scholar
  102. Reisinger, M. (2002). Neue Konzepte der Tondarstellung bei Wiedergabe mittels Wellenfeldsynthese. Diplomarbeit, Fachhochschule Dsseldorf. text in German.Google Scholar
  103. Riekehof-Boehmer, H., & Wittek, H. (2011, May). Prediction of perceived width of stereo microphone setups. In 130th Convention of the AES.Google Scholar
  104. Rumsey, F. (2001). Spatial audio., Oxford: Focal Press.Google Scholar
  105. Rumsey, F. (2002). Spatial quality evaluation for reproduced sound: Terminology, meaning, and a scene-based paradigm. JAES, 50(9), 651–666.Google Scholar
  106. Sanson, J., Corteel, E., & Warusfel, O. (2008, May). Objective and subjective analysis of localization accuracy in wave field synthesis. In 124th Convention of the AES (p. 7361).Google Scholar
  107. Santala, O., & Pulkki, V. (2011). Directional perception of distributed sound sources. JASA, 129(3), 1522–1530.Google Scholar
  108. Scheirer, E.D., Väänänen, R., & Houpaniemi, V. (1999). AudioBIFS: Describing audio scenes with the MPEG-4 multimedia standard. IEEE Trans on Multimedia, 1(3), 237–250.CrossRefGoogle Scholar
  109. Schroeder, M.R. (1959). Measurement of sound diffusion in reverberation chambers. JASA, 31(11), 1407–1414.Google Scholar
  110. Shinn-Cunningham, B. (2001, May). Localizing sound in rooms. In ACM SIGGRAPH and EUROGRAPHICS Campfire (pp. 17–22).Google Scholar
  111. Sommerfeld, A. (1955). Partial differential equations in physics., New York: Academic Press Inc.Google Scholar
  112. Sommerfeld, A. (1950). Optik [Optics]. Wiesbaden: Dieterich’sche Verlagsbuchhandlung. text in German.Google Scholar
  113. Sonke, J.-J. (2000). Variable acoustics by wave field synthesis. PhD thesis, Delft University of Technology.Google Scholar
  114. Spors, S. (2007, October). Extension of an analytic secondary source selection criterion for wave field synthesis. In 123th Convention of the AES (p. 7299).Google Scholar
  115. Spors, S., & Ahrens, J. (2008, October). A comparison of wave field synthesis and higher-order Ambisonics with respect to physical properties and spatial sampling. In 125th Convention of the AES (p. 7556).Google Scholar
  116. Spors, S., & Ahrens, J. (2009, May). Spatial aliasing artifacts of wave field synthesis for the reproduction of virtual point sources. In 126th Convention of the AES.Google Scholar
  117. Spors, S., Wierstorf, H., Geier, M., & Ahrens, J. (2009, October). Physical and perceptual properties of focused sources in wave field synthesis. In 127th Convention of the AES (p. 7914).Google Scholar
  118. Spors, S., & Ahrens, J. (2010a, May). Analysis and improvement of preequalization in 2.5-dimensional wave field synthesis. In 128th Convention of the AES.Google Scholar
  119. Spors, S., & Ahrens, J. (2010b, October). Local sound field synthesis by virtual secondary sources. In 40th Conference of the AES (pp. 6–3).Google Scholar
  120. Spors, S., & Ahrens, J. (2010c, March). Reproduction of focused sources by the spectral division method. In IEEE International Symposium on Communication, Control and Signal Processing (ISCCSP).Google Scholar
  121. Spors, S., Kuscher, V., & Ahrens, J. (2011a, October). Efficient realization of model-based rendering for 2.5-dimensional near-field compensated higher order ambisonics. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).Google Scholar
  122. Spors, S., & Ahrens, J. (2011b, May). Interpolation and range extrapolation of head-related transfer functions using virtual local sound field synthesis. In 130th Convention of the AES.Google Scholar
  123. Start, E.W. (1997). Direct sound enhancement by wave field synthesis. PhD thesis, Delft University of Technology.Google Scholar
  124. The SoundScape Renderer Team (2011). The SoundScape Renderer. de/?id=ssr.
  125. Theile, G. (1981). Zur Theorie der optimalen Wiedergabe von stereofonischen Signalen über Lautsprecher und Kopfhörer. Rundfunktech. Mitt., 25, 155–170.Google Scholar
  126. Theile, G., Wittek, H., & Reisinger, M. (2003, June). Potential wavefield synthesis applications in the multichannel stereophonic world. In 24th International Conference of the AES Google Scholar
  127. Toole, F.E. (2008). Sound reproduction: The acoustics and psychoacoustics of loudspeakers and rooms., Oxford: Focal Press.Google Scholar
  128. Travis, C. (2009, June). New mixed-order scheme for ambisonic signals. In Ambisonics Symposium.Google Scholar
  129. Verheijen, E.N.G., (1997). Sound reproduction by wave field synthesis. PhD thesis, Delft University of Technology.Google Scholar
  130. Verron, C., Aramaki, M., Kronland-Martinet, R., & Pallone, G. (2010). A 3-D immersive synthesizer for environmental sounds. IEEE Transactions on Audio Speech and Language Processing, 18(6), 1550–1561.CrossRefGoogle Scholar
  131. Vogel, P. (1993). Application of wave field synthesis in room acoustics. PhD thesis, Delft University of Technology.Google Scholar
  132. Völk, F., Faccinelli, E., & Fastl, H. (2010, March). Überlegungen zu Möglichkeiten und Grenzen virtueller Wellenfeldsynthese [Considerations on possibilities and limitations of virtual Wave Field Synthesis]. In DAGA.Google Scholar
  133. Vorländer, M. (2008). Auralization - Fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality., Berlin: Springer.Google Scholar
  134. Wagner, A., Walther, A., Melchior, F., & Strau, M. (2004, May). Generation of highly immersive atmospheres for wave field synthesis reproduction. In 116th Convention of the AES.Google Scholar
  135. Ward, D.B., & Abhayapala, T.D. (2001). Reproduction of a plane-wave sound field using an array of loudspeakers. IEEE Transactions on Speech and Audio Processing, 9(6), 697–707.CrossRefGoogle Scholar
  136. Warren, C.H.E. (1976). A note on moving multipole sources of sound. Journal of Sound and Vibration, 44(1), 3–13.zbMATHCrossRefGoogle Scholar
  137. Warusfel, O. Retrieved (2011, August). Listen HRTF database. salles/listen/.
  138. Waubke, H. (2003). Aufgabenstellung zur Seminararbeit zur Vorlesung “Theoretische Akustik” [Problem for term paper for the lecture “Theoretical Acoustics”]. IEM Graz. text in German.Google Scholar
  139. Weisstein, E.W. (2002). CRC Concise encyclopedia of mathematics., London: Chapman and Hall/CRC.CrossRefGoogle Scholar
  140. Wierstorf, H., Geier, M., & Spors, S. (2010, November). Reducing artifacts of focused sources in wave field synthesis. In 129th Convention of the AES.Google Scholar
  141. Wierstorf, H., Geier, M., Raake, A., & Spors, S. (2011, May). A free database of head-related impulse response measurements in the horizontal plane with multiple distances. In 130th Convention of the AES. Data are available at http://audio.qu.tu-berlin.de/?p=641.
  142. Williams, E.G. (1999). Fourier acoustics: Sound radiation and nearfield acoustic holography., London: Academic Press.Google Scholar
  143. Wittek, H. (2007). Perceptual differences between wavefield synthesis and stereophony. PhD thesis, University of Surrey.Google Scholar
  144. Yon, S., Tanter, M., & Fink, M. (2003). Sound focusing in rooms: The timereversal approach. JASA, 113(3), 1533–1543.Google Scholar
  145. Zhang, W., Abhayapala, T.D., Kennedy, R.A., & Duraiswami, R. (2009, April). Modal expansion of HRTFs: Continuous representation in frequency-range-angle. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 285-288).Google Scholar
  146. Zotkin, D.N., Duraiswami, R., & Gumerov, N.A. (2010). Plane-wave decomposition of acoustical scenes via spherical and cylindrical microphone arrays. IEEE Transactions on Audio Speech and Language Processing, 18(1), 2–16.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jens Ahrens
    • 1
  1. 1.Deutsche Telekom LaboratoriesTechnische Universität BerlinBerlinGermany

Personalised recommendations