Advertisement

Introduction

  • Jens Ahrens
Chapter
Part of the T-Labs Series in Telecommunication Services book series (TLABS)

Abstract

The introduction of this book reviews the history and current trends in spatial audio presentation. Starting from the invention of the telephone in the nineteenth century, the properties of Stereophony, Surround Sound, Ambisonics, and audio presentation based on head-related transfer functions are outlined. The concept of sound field synthesis with its best-known representatives Wave Field Synthesis and Near-field Compensated Higher Order Ambisonics is then introduced. The chapter ends with the problem formulation, which constitutes the basis for all subsequent chapters.

Keywords

Sound Source Secondary Source Sound Field Sweet Spot Driving Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexander, R. J. (2008). Michael Gerzon: Beyond psychoacoustics. Dora: Media Productions.Google Scholar
  2. Algazi, V. R., Duda, R. O., Thompson, D. M., & Avendano, C. (2001, October). The CIPIC HRTF database. In IEEE Workshop on Applications of Signal Processing to Audio and Electroacoustics (pp. 99–102).Google Scholar
  3. Bamford, J. S., & Vanderkooy, J. (1995, October). Ambisonic sound for us. In 99th Convention of the AES(p. 4138).Google Scholar
  4. Begault, D. R., Lee, A. S., Wenzel, E. M., & Anderson, M. R. (2000). Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. In 108th Convention of the AES.Google Scholar
  5. Bell, A. G. (1876). Improvement in telegraphy. US patent 174465.Google Scholar
  6. Berkhout, A. J., de Vries, D., & Vogel, P. (1993). Acoustic control by wave field synthesis. JASA, 93(5), 2764–2778.Google Scholar
  7. Bertet, S. (2009). Formats audio 3D hiérarchiques: Caractérisation objective et perceptive des systèmes ambisonics d’ordres supérieurs. PhD thesis, INSA Lyon. text in French.Google Scholar
  8. Blauert, J. (1997). Spatial Hearing. New York: Springer.Google Scholar
  9. Blauert, J., & Rabenstein, R. (2010, October). Schallfeldsynthese mit Lautsprechern I - Beschreibung und Bewertung. In ITG-Fachtagung Sprachkommunikation.Google Scholar
  10. Bregman, A. S. (1990). Auditory Scene Analysis. Cambridge: MIT Press.Google Scholar
  11. de Brujin, W. (2004). Application of wave field synthesis in videoconferencing. PhD thesis, Delft University of Technology.Google Scholar
  12. Bureau International des Poids et Mesures (2006). The international system of units (SI).Google Scholar
  13. Colton, D., & Kress, R. (1998). Inverse acoustic and electromagnetic scattering theory (2nd ed.). Berlin: Springer.zbMATHGoogle Scholar
  14. Daniel, J. (2001). Représentation de champs acoustiques, application á la transmission et á la reproduction de scénes sonores complexes dans un contexte multimédia (Representations of sound fields, application to the transmission and reproduction of complex sound scenes in a multimedia context). PhD thesis, Université Paris 6. text in French.Google Scholar
  15. Daniel, J. (2003, May). Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, new ambisonic format. In 23rd International Conference of the AES.Google Scholar
  16. de Vries, D. (2009). Wave field synthesis. AES monograph. New York: AES.Google Scholar
  17. du Moncel, T. (1881, December). The telephone at the Paris opera. Scientific American, pp. 422–423.Google Scholar
  18. Dutton, G. F. (1962). The assessment of two-channel stereophonic reproduction performance in studio monitor rooms, living rooms and small theatres. JAES, 10(2), 98–105.MathSciNetGoogle Scholar
  19. Fazi, F., & Nelson, P. (2007, September). A theoretical study of sound field reconstruction techniques. In 19th International Congress on Acoustics.Google Scholar
  20. Frank, M., Zotter, F., & Sontacchi, A. (2008, November). Localization experiments using different 2D ambisonics decoders. In Proceedings of the 25th Tonmeistertagung (VDT International Convention).Google Scholar
  21. Gabrielsson, A., & Sjgren, H. (1979). Perceived sound quality of soundreproducing systems. JASA, 65(4), 1019–1033.Google Scholar
  22. Gardner, W. G. (1997). 3-D Audio using loudspeakers. PhD thesis, Massachusetts Institute of Technology.Google Scholar
  23. Geier, M., Spors, S., & Ahrens, J. (2008, May). The soundscape renderer: A unified spatial audio reproduction framework for arbitrary rendering methods. In 124th Convention of the AES.Google Scholar
  24. Geier, M., Wierstorf, H., Ahrens, J., Wechsung, I., Raake, A., & Spors, S. (2010, May). Perceptual evaluation of focused sources in wave field synthesis. In 128th Convention of the AES (p. 8069).Google Scholar
  25. Gerzon, M. A. (1973). Periphony: With-height sound reproduction. JAES, 21, 2–10.Google Scholar
  26. Gerzon, M. A. (1980, February). Practical periphony: The reproduction of full-sphere sound. In 65th Convention of the AES (p. 1571).Google Scholar
  27. Gerzon, M. A. (1992a, March). General metatheory of auditory localization. In 92th Convention of the AES (p. 3306).Google Scholar
  28. Gerzon, M. A. (1992b). Psychoacoustic decoders for multispeaker stereo and surround sound. In 93rd Convention fo the AES (p. 3406).Google Scholar
  29. Girod, B., Rabenstein, R., & Stenger, A. (2001). Signals and systems. New York: Wiley.Google Scholar
  30. Haas, W. (1951). The influence of a single echo on the audibility of speech. Acustica, 1, 49–58.Google Scholar
  31. Hamasaki, K., Hiyama, K., & Okumura, R. (2005, May). The 22.2 multichannel sound system and its application. In 118th Convention of the AES (p. 6406).Google Scholar
  32. Hammershøi, D., & Møller, H. (2002). Methods for binaural recording and reproduction. Acustica, 88(3), 303–311.Google Scholar
  33. Hannemann, J., & Donohue, K. D. (2008). Virtual sound source rendering using a multipole-expansion and method-of-moments approach. JAES, 56(6), 473–481.Google Scholar
  34. Ise, S. (1999). A principle of sound field control based on the Kirchhoff–Helmholtz integral equation and the theory of inverse systems. Acta Acustica United with Acustica, 85, 78–87.Google Scholar
  35. Izhaki, R. (2007). Mixing Audio—Concepts, Practices and Tools. Oxford: Focal Press.Google Scholar
  36. Jessel, M. (1973). Acoustique théorique - propagation et holophonie (theoretical acoustics - propagation and holophony). Paris: Masson et Cie. text in French.Google Scholar
  37. Jones, J. P. (2001). Optimal focusing by spatio-temporal inverse filter. II. Experiments application to focusing through absorbing and reverberating media. JASA, 110(1), 48–58.Google Scholar
  38. Kim, Y., Deille, O., & Nelson, P. A. (2006). Crosstalk cancellation in virtual acoustic imaging systems for multiple listeners. Journal of Sound and Vibration, 297(1–2), 251–266.CrossRefGoogle Scholar
  39. Kirkeby, O., & Nelson, P. A. (1993). Reproduction of plane wave sound fields. JASA, 94(5), 2992–3000.Google Scholar
  40. Kolundžija, M., Faller, C., & Vetterli, M. (2009, May). Sound field reconstruction: An improved approach for wave field synthesis. In 126th Convention of the AES (p. 7754).Google Scholar
  41. Lee, S.-R., & Sung, K.-M. (2003). Generalized encoding and decoding functions for a cylindrical ambisonic sound system. IEEE Signal Processing Letters, 10(1), 21–23.CrossRefGoogle Scholar
  42. Lindau, A., Hohn, T., Weinzierl, S. (2007, May). Binaural resynthesis for comparative studies of acoustical environments. In 122nd Convention of the AES (p. 7032).Google Scholar
  43. Nelson, P. A., & Rose, J. F. W. (2005). Errors in two-point sound reproduction. JASA, 118(1), 193–204.Google Scholar
  44. Neukom, M. (2007, October). Ambisonic panning. In 123th Convention of the AES.Google Scholar
  45. Poletti, M. A. (1996). The design of encoding functions for stereophonic and polyphonic sound systems. JAES, 44(11), 948–963.Google Scholar
  46. Poletti, M. A. (2005). Three-dimensional surround sound systems based on spherical harmonics. JAES, 53(11), 1004–1025.Google Scholar
  47. Pollow, M., & Behler, G (2009). Variable directivity for platonic sound sources based on spherical harmonics optimization. Acta Acustica United with Acustica, 6, 1082–1092.CrossRefGoogle Scholar
  48. Pulkki, V. (1997). Virtual sound source positioning using vector base amplitude panning. JAES, 45(6), 456–466.Google Scholar
  49. Pulkki, V. (2007). Spatial sound reproduction with directional audio coding. JAES, 55(6), 503–516.Google Scholar
  50. Rabenstein, R., & Spors, S. (2007). Multichannel sound field reproduction. In Benesty, J., Sondhi, M., & Huang, Y. (Eds.), Springer Handbook on Speech Processing and Speech Communication (pp. 1095–1114). Berlin: Springer.Google Scholar
  51. Rumsey, F. (2001). Spatial Audio. Oxford: Focal Press.Google Scholar
  52. Rumsey, F. (2002). Spatial quality evaluation for reproduced sound: Terminology, meaning, and a scene-based paradigm. JAES, 50(9), 651–666.Google Scholar
  53. Rumsey, F., Kassier, S., Zieliski, R., & Bech, S. (2005). On the relative importance of spatial and timbral fidelities in judgements of degraded multichannel audio quality. JASA, 118(2), 968–976.Google Scholar
  54. Sanson, J., Corteel, E., & Warusfel, O. (2008, May). Objective and subjective analysis of localization accuracy in wave field synthesis. In 124th Convention of the AES (p. 7361).Google Scholar
  55. Start, E. W. (1997). Direct sound enhancement by wave field synthesis. PhD thesis, Delft University of Technology.Google Scholar
  56. Steinberg, J. C., & Snow, W. B. (1934a, January). Auditory perspective—Physical factors. Electrical Engineering, 12–17.Google Scholar
  57. Steinberg, J. C., & Snow, W. B. (1934b). Symposium on wire transmission of symphonic music and its reproduction in auditory perspective: Physical factors. Bell Systems Technical Journal, XIII(2).Google Scholar
  58. The SoundScape Renderer Team (2011). The SoundScape Renderer. http://www.tu-berlin.de/?id=ssr
  59. Theile, G., & Wittek, H. (2011, May). Principles in surround recordings with height. In 130th Convention of the AES.Google Scholar
  60. Theile, G. (1980). On the localisation in the superimposed soundfield. PhD thesis, Technische Universität Berlin.Google Scholar
  61. Toole, F. E. (2008). Sound reproduction: The acoustics and psychoacoustics of loudspeakers and rooms. Oxford: Focal Press.Google Scholar
  62. Torick, E. (1998). Highlights in the history of multichannel sound. JAES, 46(1/2), 27–31.Google Scholar
  63. Wallach, H., Newman, E. B., & Rosenzweig, M. R. (1949). The precedence effect in sound localization. American Journal of Psychology, 57, 315–336.CrossRefGoogle Scholar
  64. Ward, D. B., & Abhayapala, T. D. (2001). Reproduction of a plane-wave sound field using an array of loudspeakers. IEEE Transaction on Speech and Audio Processing, 9(6), 697–707.CrossRefGoogle Scholar
  65. Warusfel, O. (2011). Listen HRTF database. Retrieved Aug, 2011, from http://recherche.ircam.fr/equipes/salles/listen/.
  66. Wierstorf, H., Geier, M., Raake, A., & Spors, S. (2011, May). A free database of head-related impulse response measurements in the horizontal plane with multiple distances. In 130th Convention of the AES. Data are available at http://audio.qu.tu-berlin.de/?p=641.
  67. Williams, E. G. (1999). Fourier acoustics: Sound radiation and nearfield acoustic holography. London: Academic.Google Scholar
  68. Wittek, H. (2007). Perceptual differences between wavefield synthesis and stereophony. PhD thesis, University of Surrey.Google Scholar
  69. Zotter, F. (2009). Analysis and synthesis of sound-radiation with spherical arrays. Doctoral Thesis, Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz.Google Scholar
  70. Zotter, F., & Pomberger, H. (2010, May). Ambisonic decoding with and without mode-matching: Case study using the hemisphere. In 2nd International Symposium on Ambisonics and Spherical Acoustics.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jens Ahrens
    • 1
  1. 1.Deutsche Telekom LaboratoriesTechnische Universität BerlinBerlinGermany

Personalised recommendations