Simulating Dynamics in RNA–Protein Complexes

  • John Eargle
  • Zaida Luthey-Schulten
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 27)


Simulation of RNA–protein complexes presents new challenges for computational studies. While the fields of protein folding and docking of protein complexes have matured sufficiently so that experimental and computational methods complement and cross-validate each other, methods for RNA folding and docking of RNA to proteins are still in their infancy. Part of the difficulty lies in the complex interactions of RNA with ions and water that differ considerably from those of proteins, due to the extreme electronegativity of RNA, and result in unique dynamics. Here we address challenging issues in the simulation of RNA and its interactions with solvent, ions, and proteins. A general discussion of the preparation and simulation of large RNA–protein systems with divalent cations and modified bases is given, followed by a critical summary of methods for analyzing the resulting MD trajectories.


Molecular Dynamic Simulation Root Mean Square Deviation Molecular Dynamic Trajectory Force Field Parameter Free Energy Landscape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are supported by NSF Grants MCB-0844670 and PHY-0822613 and NIH P41 RR005969. We thank Ke Chen for creating the figures related to S4·h16 and Eduard Schreiner for providing the VMD Tcl script for calculating the angle between RNA helices.


  1. Alexander RW, Eargle J, Luthey-Schulten Z (2010) Experimental and computational determination of tRNA dynamics. FEBS Lett 584(2):376–386PubMedGoogle Scholar
  2. Andresen K, Das R, Park H, Smith H, Kwok L, Lamb J, Kirkland E, Herschlag D, Finkelstein K, Pollack L (2004) Spatial distribution of competing ions around DNA in solution. Phys Rev Lett 93(24):248103PubMedGoogle Scholar
  3. Armache JP, Jarasch A, Anger AM, Villa E, Becker T, Bhushan S, Jossinet F, Habeck M, Dindar G, Franckenberg S, Marquez V, Mielke T, Thomm M, Berninghausen O, Beatrix B, Söding J, Westhof E, Wilson DN, Beckmann R (2010) Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80 S eukaryotic ribosome. Proc Natl Acad Sci USA 107(46):19754–19759PubMedGoogle Scholar
  4. Aszói A, Taylor WR (1993) Connection topology of proteins. Comput Appl Biosci 9:523–529Google Scholar
  5. Auffinger P, Hashem Y (2007) SwS: a solvation web service for nucleic acids. Bioinformatics 23(8):1035–1037PubMedGoogle Scholar
  6. Auffinger P, Vaiana A (2005) Molecular dynamics simulations of RNA systems. Handbook of RNA biochemistry. Wiley-VCH Verlag, Weinheim, pp 560–576Google Scholar
  7. Auffinger P, Westhof E (1997) RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin. J Mol Biol 269(3):326–341PubMedGoogle Scholar
  8. Auffinger P, Cheatham TE III, Vaiana AC (2007) Spontaneous formation of KCl aggregates in biomolecular simulations: a force field issue? J Chem Theor Comput 3(5):1851–1859Google Scholar
  9. Bai Y, Greenfeld M, Travers KJ, Chu VB, Lipfert J, Doniach S, Herschlag D (2007) Quantitative and comprehensive decomposition of the ion atmosphere around nucleic acids. J Am Chem Soc 129(48):14981–14988PubMedGoogle Scholar
  10. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18):10037–10041PubMedGoogle Scholar
  11. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289(5481):905–920PubMedGoogle Scholar
  12. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Protein Struct Funct Genet 73:765–783Google Scholar
  13. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer ELL (2002) The Pfam protein families database. Nucleic Acids Res 30(1):276–280PubMedGoogle Scholar
  14. Becker T, Bhushan S, Jarasch A, Armache JP, Funes S, Jossinet F, Gumbart J, Mielke T, Berninghausen O, Schulten K, Westhof E, Gilmore R, Mandon EC, Beckmann R (2009) Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326:1369–1373PubMedGoogle Scholar
  15. Bellur DL, Woodson SA (2009) A minimized rRNA-binding site for ribosomal protein S4 and its implications for 30 S assembly. Nucleic Acids Res 37(6):1886–1896PubMedGoogle Scholar
  16. Berk V, Zhang W, Pai RD, Cate JHD (2006) Structural basis for mRNA and tRNA positioning on the ribosome. Proc Natl Acad Sci USA 103(43):15830–15834PubMedGoogle Scholar
  17. Beššeová I, Otyepka M, Réblová K, Šponer J (2009) Dependence of A-RNA simulations on the choice of the force field and salt strength. Phys Chem Chem Phys 11:10701–10711PubMedGoogle Scholar
  18. Beššeová I, Réblová K, Leontis NB, Šponer J (2010) Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome. Nucleic Acids Res 38(18):6247–6264PubMedGoogle Scholar
  19. Black Pyrkosz A, Eargle J, Sethi A, Luthey-Schulten Z (2010) Exit strategies for charged tRNA from GluRS. J Mol Biol 397:1350–1371PubMedGoogle Scholar
  20. Brown JW, Birmingham A, Griffiths PE, Jossinet F, Kachouri-Lafond R, Knight R, Lang BF, Leontis N, Steger G, Stombaugh J, Westhof E (2009) The RNA structure alignment ontology. RNA 15(9):1623–1631PubMedGoogle Scholar
  21. Cabello-Villegas J, Winkler ME, Nikonowicz EP (2002) Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe). J Mol Biol 319(5):1015–1034PubMedGoogle Scholar
  22. Charette M, Gray MW (2000) Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49(5):341–351PubMedGoogle Scholar
  23. Chen Y, Varani G (2005) Protein families and RNA recognition. FEBS Lett 272(9):2088–2097Google Scholar
  24. Chen K, Roberts E, Luthey-Schulten Z (2009) Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4. BMC Evol Biol 9:179–195PubMedGoogle Scholar
  25. Chen K, Eargle J, Sarkar K, Gruebele M, Luthey-Schulten Z (2010) The functional role of ribosomal signatures. Biophys J 99(12):3930–3940PubMedGoogle Scholar
  26. Chen K, Magis A, Eargle J, Roberts E, Luthey-Schulten Z (2011) Evolution of translation: EF-Tu:tRNA.
  27. Chennubhotla C, Bahar I (2006) Markov propagation of allosteric effects in biomolecular systems: application to GroEL-GroES. Mol Syst Biol 2:36PubMedGoogle Scholar
  28. Clementi C, Garcia AE, Onuchic JN (2003) Interplay among tertiary contacts, secondary structure formation and side-chain packing in the protein folding mechanism: all-atom representation study of protein L. J Mol Biol 326:933–954PubMedGoogle Scholar
  29. Cowan JA (1995) The biological chemistry of magnesium. VCH, New YorkGoogle Scholar
  30. Csermely P (2008) Creative elements: network-based predictions of active centres in proteins and cellular and social networks. Trends Biochem Sci 33(12):569–576PubMedGoogle Scholar
  31. Cui Q, Tan RK-Z, Harvey SC, Case DA (2006) Low-resolution molecular dynamics simulations of the 30 S ribosomal subunit. Multiscale Model Simul 5(4):1248–1263Google Scholar
  32. Das R, Mills T, Kwok L, Maskel G, Millett I, Doniach S, Finkelstein K, Herschlag D, Pollack L (2003) Counterion distribution around DNA probed by solution X-ray scattering. Phys Rev Lett 90(18):188103PubMedGoogle Scholar
  33. David-Eden H, Mandel-Gutfreund Y (2008) Revealing unique properties of the ribosome using a network based analysis. Nucleic Acids Res 36(14):4641–4652PubMedGoogle Scholar
  34. del Sol A, Fujihashi H, Amoros D, Nussinov R (2006) Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol Syst Biol 2:19Google Scholar
  35. Demšar U, Špatenková O, Virrantaus K (2008) Identifying critical locations in a spatial network with graph theory. Trans GIS 12(1):61–82Google Scholar
  36. Ditzler MA, Otyepka M, Šponer J, Walter NG (2010) Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in. Acc Chem Res 43(1):40–47PubMedGoogle Scholar
  37. Draper DE (2008) RNA folding: thermodynamic and molecular descriptions of the roles of ions. Biophys J 95(12):5489–5495PubMedGoogle Scholar
  38. Dunin-Horkawicz S, Czerwoniec A, Gajda MJ, Feder M, Grosjean H, Bujnicki JM (2006) MODOMICS: a database of RNA modification pathways. Nucleic Acids Res 34(Database issue):D145–D149PubMedGoogle Scholar
  39. Eargle J, Black AA, Sethi A, Trabuco LG, Luthey-Schulten Z (2008) Dynamics of recognition between tRNA and elongation factor Tu. J Mol Biol 377(5):1382–1405PubMedGoogle Scholar
  40. Eargle J, Li L, Luthey-Schulten Z (2011) Dynamical network analysis.
  41. Eigen M, Winkler-Oswatitsch R (1981) Transfer-RNA: the early adaptor. Naturwissenschaften 68(5):217–228PubMedGoogle Scholar
  42. Foloppe N, MacKerrell AD Jr (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21:86–104Google Scholar
  43. Freddolino PL, Arkhipov A, Shih AY, Yin Y, Chen Z, Schulten K (2008) Application of residue-based and shape-based coarse graining to biomolecular simulations, Coarse-graining of condensed phase and biomolecular systems. Chapman and Hall, LondonGoogle Scholar
  44. Freddolino PL, Park S, Bt R, Schulten K (2009) Force field bias in protein folding simulations. Biophys J 96(9):3772–3780PubMedGoogle Scholar
  45. Freeman LC (1979) Centrality in social networks conceptual clarification. Soc Network 1(3):215–239Google Scholar
  46. Froloff N, Windemuth A, Honig B (1997) On the calculation of binding free energies using continuum methods: application to MHC class I protein-peptide interactions. Protein Sci 6(6):1293–1301PubMedGoogle Scholar
  47. Garcia AE, Paschek D (2008) Simulation of the pressure and temperature folding/unfolding equilibrium of a small RNA hairpin. J Am Chem Soc 130(3):815–817PubMedGoogle Scholar
  48. Ghosh A, Vishveshwara S (2007) A study of communication pathways in methionyl-tRNA synthetase by molecular dynamics simulations and structure network analysis. Proc Natl Acad Sci USA 104(40):15711–15716PubMedGoogle Scholar
  49. Giege R, Sissler M, Florentz C (1998) Universal rules and idiosyncratic features in tRNA identity. NucleicAcids Res 26(22):5017–5035Google Scholar
  50. Girvan M, Newman M (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826PubMedGoogle Scholar
  51. Glykos NM (2006) CARMA: a molecular dynamics analysis program. J Comput Chem 27(14):1765–1768PubMedGoogle Scholar
  52. Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330(4):891–913PubMedGoogle Scholar
  53. Goodey NM, Benkovic SJ (2008) Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 4(8):474–482PubMedGoogle Scholar
  54. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: An RNA family database. Nucleic Acids Res 31(1):439–441PubMedGoogle Scholar
  55. Grilley D, Soto AM, Draper DE (2006) Mg2+-RNA interaction free energies and their relationship to the folding of RNA tertiary structures. Proc Natl Acad Sci USA 103(38):14003–14008PubMedGoogle Scholar
  56. Gumbart JC, Trabuco LG, Schreiner E, Villa E, Schulten K (2009) Regulation of the protein-conducting channel by a bound ribosome. Structure 17(11):1453–1464PubMedGoogle Scholar
  57. Hashem Y, Auffinger P (2009) A short guide for molecular dynamics simulations of RNA systems. Methods 47(3):187–197PubMedGoogle Scholar
  58. Held WA, Ballou B, Mizushima S, Nomura M (1974) Assembly mapping of 30 S ribosomal proteins from Escherichia coli: further studies. J Biol Chem 249(10):3103–3111PubMedGoogle Scholar
  59. Helm M (2006) Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Res 34(2):721–733PubMedGoogle Scholar
  60. Hermann T, Westhof E (1998) Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations. Structure 6(10):1303–1314PubMedGoogle Scholar
  61. Hoehndorf R, Batchelor C, Bittner T, Dumontier M, Eilbecke K, Knight R, Mungall CJ, Richardson JS, Stombaugh J, Westhof E, Zirbel CL, Leontis NB (2011) The RNA ontology (RNAO): an ontology for integrating RNA sequence and structure data. Appl Ontol 6:53–89Google Scholar
  62. Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Mol Graph 14:33–38PubMedGoogle Scholar
  63. Hyeon C, Thirumalai D (2007) Mechanical unfolding of RNA: from hairpins to structures with internal multiloops. Biophys J 92(3):731–743PubMedGoogle Scholar
  64. Izvekov S, Voth G (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109(7):2469–2473PubMedGoogle Scholar
  65. Jiang W, Hardy DJ, Phillips JC, MacKerell AD Jr, Schulten K, Roux B (2011) High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. J Phys Chem Lett 2(2):87–92PubMedGoogle Scholar
  66. Kirmizialtin S, Elber R (2010) Computational exploration of mobile ion distributions around RNA duplex. J Phys Chem B 114(24):8207–8220Google Scholar
  67. Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19(2):120–127PubMedGoogle Scholar
  68. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897PubMedGoogle Scholar
  69. Landes C, Perona JJ, Brunie S, Rould MA, Zelwer C, Steitz TA, Risler JL (1995) A structure-based multiple sequence alignment of all class I aminoacyl-tRNA synthetases. Biochemie 77(3):194–203Google Scholar
  70. Lange OF, Grubmüller H (2008) Full correlation analysis of conformational protein dynamics. Protein Struct Funct Genet 70(4):1294–1312Google Scholar
  71. Lavery R, Moakher M, Maddocks J, Petkeviciute D, Zakrzewska K (2009) Conformational analysis of nucleic acids revisited: curves+. Nucleic Acids Res 37(17):5917–5929PubMedGoogle Scholar
  72. Lee EH, Hsin J, Sotomayor M, Comellas G, Schulten K (2009) Discovery through the computational microscope. Structure 17(10):1295–1306PubMedGoogle Scholar
  73. Leipply D, Draper DE (2010) Dependence of RNA tertiary structural stability on Mg2+ concentration: interpretation of the hill equation and coefficient. Biochemistry 49(9):1843–1853PubMedGoogle Scholar
  74. Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7(04):499–512PubMedGoogle Scholar
  75. Li W, Frank J (2007) Transfer RNA in the hybrid P/E state: correlating molecular dynamics simulations with cryo-EM data. Proc Natl Acad Sci USA 104(42):16540–16545PubMedGoogle Scholar
  76. Li L, Sethi A, Luthey-Schulten Z (2009) Evolution of translation: class I aminoacyl-tRNA synthetase:tRNA complexes.
  77. Limbach PA, Crain PF, McCloskey JA (1994) Summary: the modified nucleosides of RNA. Nucleic Acids Res 22(12):2183–2196PubMedGoogle Scholar
  78. Lipfert J, Sim AYL, Herschlag D, Doniach S (2010) Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding. RNA 16(4):708–719PubMedGoogle Scholar
  79. Lu XJ, Olson WK (2003) 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31(17):5108–5121PubMedGoogle Scholar
  80. MacKerell AD, Nilsson L (2008) Molecular dynamics simulations of nucleic acid-protein complexes. Curr Opin Struct Biol 18(2):194–199PubMedGoogle Scholar
  81. Morozova N, Allers J, Myers J, Shamoo Y (2006) Protein-RNA interactions: exploring binding patterns with a three-dimensional superposition analysis of high resolution structures. Bioinformatics 22(22):2746–2752PubMedGoogle Scholar
  82. Mulder AM, Yoshioka C, Beck AH, Bunner AE, Mulligan RA, Potter CS, Carragher B, Williamson JR (2010) Visualizing ribosome biogenesis: parallel assembly pathways for the 30 S subunit. Science 330(6004):673–677PubMedGoogle Scholar
  83. O’Donoghue P, Luthey-Schulten Z (2003) On the evolution of structure in the aminoacyl-tRNA synthetases. Microbiol Mol Biol Rev 67:550–573PubMedGoogle Scholar
  84. O’Donoghue P, Luthey-Schulten Z (2005) Evolutionary profiles derived from the QR factorization of multiple structural alignments gives an economy of information. J Mol Biol 346(3):875–894PubMedGoogle Scholar
  85. Ohtaki H (2001) Ionic solvation in aqueous and nonaqueous solutions. Monatsh Chem 132:1237–1268Google Scholar
  86. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676PubMedGoogle Scholar
  87. Pabit SA, Qiu X, Lamb JS, Li L, Meisburger SP, Pollack L (2009) Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA. Nucleic Acids Res 37(12):3887–3896PubMedGoogle Scholar
  88. Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818PubMedGoogle Scholar
  89. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612PubMedGoogle Scholar
  90. Pogorelov TV, Luthey-Schulten Z (2004) Variations in the fast folding rates of the lambda-repressor: a hybrid molecular dynamics study. Biophys J 87:207–214PubMedGoogle Scholar
  91. Pogorelov TV, Autenrieth F, Roberts E, Luthey-Schulten ZA (2007) Cytochrome c2 exit strategy: dissociation studies and evolutionary implications. J Phys Chem B 111(3):618–634PubMedGoogle Scholar
  92. Ponomarev SY, Thayer KM, Beveridge DL (2004) Ion motions in molecular dynamics simulations on DNA. Proc Natl Acad Sci USA 101(41):14771–14775PubMedGoogle Scholar
  93. Pranata J, Wierschke SG, Jorgensen WL (1991) OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. J Am Chem Soc 113(8):2810–2819Google Scholar
  94. Reyes CM, Kollman PA (2000) Structure and thermodynamics of RNA-protein binding: using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change. J Mol Biol 297(5):1145–1158PubMedGoogle Scholar
  95. Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC Bioinformatics 7:382PubMedGoogle Scholar
  96. Roberts E, Sethi A, Montoya J, Woese CR, Luthey-Schulten Z (2008) Molecular signatures of ribosomal evolution. Proc Natl Acad Sci USA 105(37):13953–13958PubMedGoogle Scholar
  97. Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the nonlinear Poisson-Boltzmann equation: multiple dielectric constants and multivalent ions. J Phys Chem B 105:6507–6514Google Scholar
  98. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J Comput Chem 23(1):128–137PubMedGoogle Scholar
  99. Roh J, Briber R, Damjanovic A, Thirumalai D, Woodson S, Sokolov A (2009) Dynamics of tRNA at different levels of hydration. Biophys J 96(7):2755–2762PubMedGoogle Scholar
  100. Russell R, Zhuang X, Babcock HP, Millett IS, Doniach S, Chu S, Herschlag D (2002) Exploring the folding landscape of a structured RNA. Proc Natl Acad Sci USA 99(1):155–160PubMedGoogle Scholar
  101. Sakharov DV, Lim C (2008) Force fields including charge transfer and local polarization effects: application to proteins containing multi/heavy metal ions. J Comput Chem 30(2):191–202Google Scholar
  102. Sambriski E, Schwartz D, de Pablo J (2009) A mesoscale model of DNA and its renaturation. Biophys J 96(5):1675–1690PubMedGoogle Scholar
  103. Sanbonmatsu KY, Joseph S, Tung CS (2005) Simulating movement of tRNA into the ribosome during decoding. Proc Natl Acad Sci USA 102(44):15854–15859PubMedGoogle Scholar
  104. Schlick T (2009) Molecular dynamics-based approaches for enhanced sampling of long-time, large-scale conformational changes in biomolecules. F100 Biol Rep 1:51Google Scholar
  105. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A (2000) Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102(5):615–623PubMedGoogle Scholar
  106. Schrödinger LLC The PyMOL molecular graphics system, version 1.3Google Scholar
  107. Serra MJ, Baird JD, Dale T, Fey BL, Retatagos K, Westhof E (2002) Effects of magnesium ions on the stabilization of RNA oligomers of defined structures. RNA 8(3):307–323PubMedGoogle Scholar
  108. Sethi A, O’Donoghue P, Luthey-Schulten Z (2005) Evolutionary profiles from the QR factorization of multiple sequence alignments. Proc Natl Acad Sci USA 102(11):4045–4050PubMedGoogle Scholar
  109. Sethi A, Eargle J, Black AA, Luthey-Schulten Z (2009) Dynamical networks in tRNA: protein complexes. Proc Natl Acad Sci USA 106(16):6620–6625PubMedGoogle Scholar
  110. Silvian LF, Wang J, Steitz TA (1999) Insights into editing from an Ile-tRNA synthetase structure with tRNAIle and mupirocin. Science 285:1074–1077PubMedGoogle Scholar
  111. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K (2007) Accelerating molecular modeling applications with graphics processors. J Comput Chem 28(16):2618–2640PubMedGoogle Scholar
  112. Süel GM, Lockless SW, Wall MA, Ranganathan R (2002) Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Mol Biol 10(1):59–69Google Scholar
  113. Tang CL, Alexov E, Pyle AM, Honig B (2007) Calculation of pKas in RNA: on the structural origins and functional roles of protonated nucleotides. J Mol Biol 366(5):1475–1496PubMedGoogle Scholar
  114. Tinoco I Jr, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281PubMedGoogle Scholar
  115. Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16(5):673–683PubMedGoogle Scholar
  116. Trabuco LG, Schreiner E, Eargle J, Cornish P, Ha T, Luthey-Schulten Z, Schulten K (2010) The role of L1 stalk: tRNA interaction in the ribosome elongation cycle. J Mol Biol 402:741–760PubMedGoogle Scholar
  117. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general AMBER force field. J Comput Chem 25(9):1157–1174PubMedGoogle Scholar
  118. Whitford PC, Noel JK, Gosavi S, Schug A, Sanbonmatsu KY, Onuchic JN (2009) An all-atom structure-based potential for proteins: bridging minimal models with all-atom empirical forcefields. Protein Struct Funct Bioinf 75(2):430–441Google Scholar
  119. Wimberly BT, Brodersen DE, Clemons WM, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30 S ribosomal subunit. Nature 407(6802):327–339PubMedGoogle Scholar
  120. Winker S, Woese CR (1991) A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14(4):305–310PubMedGoogle Scholar
  121. Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271PubMedGoogle Scholar
  122. Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97(15):8392–8396PubMedGoogle Scholar
  123. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87(12):4576–4579PubMedGoogle Scholar
  124. Woese CR, Olsen GJ, Ibba M, Söll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64(1):202–236PubMedGoogle Scholar
  125. Yamasaki S, Nakamura S, Terada T, Shimizu K (2007) Mechanism of the difference in the binding affinity of E. coli tRNAGln to glutaminyl-tRNA synthetase caused by noninterface nucleotides in variable loop. Biophys J 92:192–200PubMedGoogle Scholar
  126. Yang H, Jossinet F, Leontis N, Chen L, Westbrook J, Berman H, Westhof E (2003) Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res 31(13):3450–3460PubMedGoogle Scholar
  127. Zhang L, Hermans J (1996) Hydrophilicity of cavities in proteins. Protein Struct Funct Genet 24(4):433–438Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Center for Biophysics and Computational BiologyUrbanaUSA
  2. 2.Department of ChemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations