Simulation of Multicarrier CDMA System in Rayleigh Channel

  • Sheetal Patil
  • U. V. Bhosle
Part of the Communications in Computer and Information Science book series (CCIS, volume 250)


The combination of CDMA and OFDM that called “Multicarrier CDMA system” can reduce the interference and improve the performance of the system in fading channel. The conventional multicarrier CDMA system has three schemes. MC-CDMA, MC-DS-CDMA, MT-CDMA. The MC-CDMA transmitter spreads the original data stream over different subcarriers using a given spreading code in the frequency domain. The MC-DS-CDMA transmitter spreads the S/P converted data streams using a given spreading code in the time domain. The resulting spectrum of each subcarrier can satisfy the orthogonal condition with the minimum frequency separation. The MT-CDMA scheme uses longer spreading codes in proportion to the number of subcarriers as compared with a normal DS- CDMA scheme therefore the system can accommodate more users than the DS- CDMA scheme. MC- CDMA scheme can reduce interference and improve performance in fading channel.


OFDM CDMA MC-CDMA Rayleigh channel modulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooper, M.A., Armour, S.M.D., McGeehan, J.P.: Downlink Performance and Complexity Evaluation of Equalisation Strategies for an MC-CDMA ‘4G’ Physical Layer Candidate. In: Proceedings Symposium IEEE Benelux Chapter on Communications and Vehicular Technology, Eindhoven (2003)Google Scholar
  2. 2.
    Hou, Z., Dubey, V.K.: BER Performance for Downlink MC-CDMA Systems over Rician Fading Channels. EURASIP Journal on Applied Signal Processing 5, 709–717 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Hara, S., Prasad, R.: Overview of Multicarrier CDMA. IEEE Communications Magazine, 126–133 (December 1997)Google Scholar
  4. 4.
    Yee, N., Linnartz, P.: Multi-Carrier CDMA in Indoor Wireless Radio Networks. In: PIMRC 1993, pp. 109–113 (1993)Google Scholar
  5. 5.
    Rappaport, T.S.: Wireless Communications, 2nd edn. PH (2004)Google Scholar
  6. 6.
    Proakis, J.G.: Digital Communications, 4th edn., pp. 483–492. MCGraw HillGoogle Scholar
  7. 7.
    Molisch, A.F.: Wireless Communications. Wiley India EditionGoogle Scholar
  8. 8.
    Gemini Jr., L.J.: Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing. IEEE Transaction on Communication COM-33, 665–666Google Scholar
  9. 9.
    Alard, M., Lassalle, R.: Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers. EBU Review - Technical 224, 168–190 (1987)Google Scholar
  10. 10.
    Hakin, S.: Communication System. Willey publicationsGoogle Scholar
  11. 11.
    Hu, Y., Zhu, J.: An Improved M-ary MC-CDMA for Mobile Communication System. IEEE (2004)Google Scholar
  12. 12.
    Hara, Y., Tsumura, S., Hara, S.: Performance Comparison of MC-CDMA and Cyclically Prefixed DS-CDMA in an uplink channel. IEEE (2004)Google Scholar
  13. 13.
    Paul, A.S.: Design and Performance of Multicarrier CDMA Systems in Frequency Selective Rayleigh Fading ChannelGoogle Scholar
  14. 14.
    Chong, L.L., Milstein, L.B.: Multicarrier CDMA for Cellular Applications. final report 1998-99 for MICRO Project 98-105Google Scholar
  15. 15.
    Hathi, N.: Simulation of Multicarrier CDMA System for Future Wireless SystemGoogle Scholar
  16. 16.
    Litwin, L., Pugel, M.: The Principles of OFDM. RF Signal ProcessingGoogle Scholar
  17. 17.
    Richardson, K.W.: UMTS overview. IEE Electronics & Communications Engineering Journal, 93–100 (June 2000)Google Scholar
  18. 18.
    HIPERLAN Type 2 Technical Specification; Physical (PHY) Layer, (October 1999)Google Scholar
  19. 19.
    IEEE std 802.11a-1999, part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, High Speed Physical Layer in the 5 GHz Band Google Scholar
  20. 20.
    Doufexi, A., Armour, S., Karlson, P., Butler, M., Nix, A., Bull, D., Mc Geehan, J.: A Comparison of the HIPERLAN/2 and IEEE 802.11a Wireless LAN Standards. IEEE Communications Magzine 40(5) (May 2002)Google Scholar
  21. 21.
    Pereira, J.M.: Fourth Generation: Now it is Personal! In: PIMRC 2000, vol. 2, pp. 1009–1016 (2000)Google Scholar
  22. 22.
    Mahonen, P., Polyzos, G.C.: European R&D on Fourth Generation Mobile and Wireless IP Networks. IEEE Personal Communications Magazine 8(6) (December 2001)Google Scholar
  23. 23.
    Sklar, B.: Rayleigh Fading Channels in Mobile Digital Communication Systems Part II: Mitigation. IEEE Communications Magzine, 102–109 (July 1997)Google Scholar
  24. 24.
    Orfanos, G., Harbetha, J., Liu, L.: MC-CDMA Based IEEE 802.11 Wireless LANGoogle Scholar
  25. 25.
    Metev, S.M., Veiko, V.P.: Laser Assisted Microtechnology, R. M. Osgood Jr., ed., 2nd edn. Springer, Berlin (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sheetal Patil
    • 1
  • U. V. Bhosle
    • 1
  1. 1.Electronics DepartmentVidyalankar Institute of TechnologyMumbaiIndia

Personalised recommendations