Efficient Hardware Architectures for AES on FPGA

  • Nalini Iyer
  • P. V. Anandmohan
  • D. V. Poornaiah
  • V. D. Kulkarni
Part of the Communications in Computer and Information Science book series (CCIS, volume 250)


This paper presents design, implementation and comparison of highly efficient architectures for AES on FPGAS: Iterative architecture and pipelined architecture. The first design is optimized for area and the second one is optimized for speed. Implementation of AES algorithm involves design of two key functional operations namely Substitute Byte/InvSubstitute Byte and MixColumn/InvMixColumn in each round unit for encryption/decryption leading to area and speed bottlenecks.The suggested architectures exploit functional block resource sharing between encryption, decryption as well as on-the-fly key generation. Both designs use dedicated BRAM’s for SubstituteByte/InvSubstituteByte functional blocks and combinational logic for MixColumn/InvMixColumn functions based on byte level decomposition. The two designs have been implemented on Xilinx Virtex II -XC2VP30 device. The Iterative architecture consumes 945 slices and 3 BRAM’s and is more compact compared to the designs reported. The proposed pipelined architecture for improved throughput uses a total resource of 12556 slices and 100 BRAMs with a throughput of 47.7 Gbps , the fastest design reported so far. These designs cater to different applications from high performance e-commerce IPsec servers to low power mobile and home applications.


Advanced Encryption Standard (AES) Cryptography Rijndael optimization Field-Programmable Gate Array(FPGA) Block RAM(BRAM) Substitute Byte/Inverse Substitute Byte (SB/ISB) MixColumn/Inverse Mixcolumn (MC/IMC) Shiftrow/InvShiftrow(SR/ISR) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gaj, K., Chodowiec, P.: Comparison of the Hardware Performance of the AES Candidates using Reconfigurable Hardware. In: The Third Advanced Encryption Standard (AES3) Candidate Conference, New York, USA, pp. 13–14 (2000)Google Scholar
  2. 2.
    Dandalis, A., Prasanna, V.K., Rolim, J.D.P.: A Comparative Study of Performance of AESCandidates Using FPGAs. In: The Third Advanced Encryption Standard (AES3) Candidate Conference, New York, USA, pp. 13–14 (2000)Google Scholar
  3. 3.
    Sklavos, N., Koulopavlou, O.: Architecture and VLSI Implemenation of the AES-Proposal Rijindael. IEEE Transactions on Computers 51(12), 1454–1459 (2002)CrossRefGoogle Scholar
  4. 4.
    Rady, A., El Sehely, E., El Hennawy, A.M.: Design and Implementation of area optimized AES algorithm on reconfigurable FPGA. In: IEEE ICM (2007)Google Scholar
  5. 5.
    Saqib, N.A., Rodriguez-Henriquez, F., Diaz-Perez, A.: AES Algorithm Implementation—An efficient approach for Sequential and Pipeline Architectures. In: Proceedings of the Fourth Mexican International Conference on Computer Science, ENC 2003 (2003)Google Scholar
  6. 6.
    Wang, S.-S., Ni, W.-S.: An Efficient FPGA Implementation of Advanced Encryption Standard Algorithm. In: ISCAS, vol. 2, pp. 597–600 (2004)Google Scholar
  7. 7.
    Chitu, C., Chien, D., Chien, C., Verbauwhede, I., Chang, F.: A Hardware Implementation in FPGA of the Rijndael Algorithm, vol. 1, pp. 507–510 (2002)Google Scholar
  8. 8.
    Hodjat, A., Verbauwhede, I.: A 21.54 Gbits/s fully pipelined AES processor on FPGA. In: Proc.12th Annual IEEE Symp: Field- Programmable Custom Computing Machines, FCCM, Napa,CA, USA, pp. 308–309 (2004)Google Scholar
  9. 9.
    Zhang, X., Parhi, K.K.: High-speed VLSI architectures for the AES algorithm. IEEE Trans. Very Large Scale Integation (VLSI) Syst. 12(9), 957–967 (2004)CrossRefGoogle Scholar
  10. 10.
    McLoone, M., McCanny, J.V.: High performance single-chip FPGA rijndael algorithm implementations. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 65–76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    McLoone, M., McCanny, J.V.: Rijndael FPGA implementation utilizing look-up tables. In: Proc. 2001 IEEE Workshop on Signal Processing Systems, SIPS 2001, Antwerp, Belgium, pp. 349–360 (September 2001)Google Scholar
  12. 12.
    Jarvinen, K.U., Tommiska, M.T., Skytta, J.O.: A fully pipelined memoryless 17.8 Gbps AES-128 encryptor. In: Proc. Int. Symp. Field-Programmable Gate Arrays (FPGA 2003), Monterey, CA, pp. 207–215 (February 2003)Google Scholar
  13. 13.
    Saggese, G.P., Mazzeo, A., Mazzocca, N., Strollo, A.G.M.: An FPGA-Based Performance Analysis of the Unrolling, Tiling and Pipelining of the AES Algorithm. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 292–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Chodowiec, P., Gaj, K.: Very Compact FPGA Implementation of the AES Algorithm. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 319–333. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Good, T., Benaissa, M.: Very Small FPGA Application-Specific Instruction Processor for AES. IEEE Transactions on Circuits and Systems 53(7) (July 2006); regular papersGoogle Scholar
  16. 16.
    Kaur, S., Vig, R.: Efficient Implementation of AES Algorithm in FPGA Device. In: International Conference on Computational Intelligence and Multimedia Applications 2007, pp. 179–187. IEEE Computer Society (2007)Google Scholar
  17. 17.
    Wang, J.-F., Chang, S.-W., Lin, P.-C.: A Novel Round Function Architecture for AES Encryption/Decryption utilizing Look-Up_Table, pp. 132–136. IEEE (2003)Google Scholar
  18. 18.
    Hodjat, A., Verbauwhede, I.: A 21.54 Gbits/s fully pipelined AES processor on FPGA. In: Proc. 12th Annual IEEE Symp. Field- Programmable Custom Computing Machines, FCCM 2004, Napa, CA, USA, pp. 308–309 (April 2004)Google Scholar
  19. 19.
    Standaert, F.X., Rouvoy, G., Quisquater, J.J., Legat, J.D.: A Methodology to Implement Block Ciphers in Reconfigurable Hardware and its Application to Fast and Compact AES Rijndael. In: Proc. of FPGA 2003, pp. 216–224. ACM (2003)Google Scholar
  20. 20.
    Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: Efficient Implementation of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design Tradeoffs. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 334–350. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Zambreno, J., Nguyen, D., Choudhary, A.K.: Exploring Area/Delay Tradeoffs in an AES FPGA Implementation. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 575–585. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Kotturi, D., Yoo, S.-M., Blizzard, J.: AES Crypto chip Utilizing High Speed Parallel Pipelined Architecture, pp. 4653–4656 (2005)Google Scholar
  23. 23.
    Fischer, V., Drutarovsky, M., Chodowiec, P.: InvMixcolumn Decomposition and Multilevel Resource Sharing in AES Implementation. IEEE Trans. on VLSI Systems 13(8), 989–992 (2005)CrossRefGoogle Scholar
  24. 24.
    Alam, M., Ghosh, S., RoyChowdhury, D., Sengupta, I.: Single chip Encryptor/Decryptor Core Implementation of AES Algorithm. In: Proc. 21st Int. Conf. on VLSI Design, pp. 693–698Google Scholar
  25. 25.
    Daemen, J., Rijmen, V.: AES submission document on Rijndael, Version 2 (September 1999),

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nalini Iyer
    • 1
    • 2
    • 3
    • 4
  • P. V. Anandmohan
    • 1
    • 2
    • 3
    • 4
  • D. V. Poornaiah
    • 1
    • 2
    • 3
    • 4
  • V. D. Kulkarni
    • 1
    • 2
    • 3
    • 4
  1. 1.BVBCETHubliIndia
  2. 2.ECILBangaloreIndia
  3. 3.ITIBangaloreIndia
  4. 4.Cg-coreelBangaloreIndia

Personalised recommendations