Enhanced Spatial Mining Algorithm Using Fuzzy Quadtrees

  • Bindiya M. Varghese
  • A. Unnikrishnan
  • K. Poulose Jacob
Part of the Communications in Computer and Information Science book series (CCIS, volume 250)


Spatial Mining differs from regular data mining in parallel with the difference in spatial and non-spatial data. The attributes of a spatial object is influenced by the attributes of the spatial object and moreover by the spatial location. A new algorithm is proposed for spatial mining by applying an image extraction method on hierarchical Quad tree spatial data structure. Homogeneity of the grid is the entropy measure which decides the further subdivision of the quadrant. The decision for decomposition to further sub quadrants is based on fuzzy rules generated using the statistical measures mean and standard deviation of the region. Finally, the algorithm proceeds by applying low level image extraction on domain dense nodes of the quad tree.


Fuzzy Quad Trees Spatial Mining Image Extraction Spatial Clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ester, M., Frommelt, A., Kriegel, H.-P., Sander, J.: Algorithms for characterization and trend detection in spatial databases. In: Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining, New York City, NY, pp. 44-50 (1998)Google Scholar
  2. 2.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley Series in Probability and Statistics. Wiley-Interscience (March 2005)Google Scholar
  3. 3.
    Ester, M., Kriegel, H.-P., Jörg, S., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231 (1996)Google Scholar
  4. 4.
    Wang, W., Yang, J., Muntz, R.R.: STING: A Statistical Information Grid Approach to Spatial Data Mining. In: Proceedings of the 23rd International Conference on Very Large Data Bases, pp.186–195, August 25-29 (1997)Google Scholar
  5. 5.
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, Seattle, Washington, United States, June 01-04, pp. 94–105 (1998)Google Scholar
  6. 6.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, June 04-06, pp. 103–114 (1996)Google Scholar
  7. 7.
    Samet, H.: Hierarchical Spatial Data Structures. In: Goos, G., Hartmanis, J. (eds.) Proc. SSD 1989, July 17-18 (1989)Google Scholar
  8. 8.
    Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: OPTICS: ordering points to identify the clustering structure. SIGMOD Rec. 28, 49–60 (1999)CrossRefGoogle Scholar
  9. 9.
    Sugeno, M.: Industrial applications of fuzzy control. Elsevier Science Pub. Co. (1985)Google Scholar
  10. 10.
    Diamant, E.: Searching For Image Information Content, Its Discovery, Extraction And Representation. Journal of Electronic Imaging 14(1), 013016-1-1–013016-1-11 (2005)CrossRefGoogle Scholar
  11. 11.
    Varghese, B.M., Unnikrishnan, A., Jacob, P.: Information Content Extraction on Quad Trees for Active Spatial Image Clustering. In: WRI World Congress on Computer Science and Information Engineering, CSIE, vol. 4, pp. 306–310 (2009)Google Scholar
  12. 12.
    Varghese, B.M., Unnikrishnan, A.: Recursive Decision Tree Induction Based on Homogeneousness for Data Clustering. In: 2008 International Conference on Cyberworlds, CW, pp. 754–758 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bindiya M. Varghese
    • 1
  • A. Unnikrishnan
    • 2
  • K. Poulose Jacob
    • 3
  1. 1.Department of Computer ScienceRajagiri College of Social SciencesKalamasseryIndia
  2. 2.Naval Physical Ocenaographic LaboratoryKakakkanadIndia
  3. 3.Department of Computer ScienceCUSATKochiIndia

Personalised recommendations