Skip to main content

Impacts of Climate Change, Including Acidification, on Marine Ecosystems and Fisheries

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

Marine ecosystems have always been affected by changes in climate at timescales from decades to millions of years. Since the industrial revolution in the nineteenth century the increase in greenhouse gases (GHG) has caused an accelerating rise in global temperature whose effects on marine biota can be detected at individual, population and ecosystem level. The rising level of CO2 and consequent acidification of the oceans is having an impact on metabolism and calcification in many organisms, with damage to vulnerable ecosystems, such as coral reefs, already occurring. The pH of the oceans is already lower now than it has been for the past 600,000 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Kroeker et al. (2010) restricted their analysis to studies that had used CO2 levels and pH values equivalent to IPCC scenarios for the year 2100, i.e. ≤950 ppm CO2 and a pH change of ≈0.4–0.5 units from present day values.

References

  • Allen MR (2003) Liability for climate change; will it ever be possible to sue anyone for damaging the climate? Nature 421:892

    Article  Google Scholar 

  • Allison EH, Perry AL, Badjeck M-C, Adger WN, Brown K, Conway D, Hall AS, Pilling GM, Reynolds JD, Andrew NL, Dulvy NK (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–196

    Google Scholar 

  • Anderson P, Håkansson B, Håkansson J, Sahlsten E, Havenhand JN, Thorndyke M, Dupont S (2008) Marine acidification – on effects and monitoring of marine acidification in the seas surrounding Sweden. SMHI Oceanography 92, SMHI, Norrköping, Sweden, 61 pp

    Google Scholar 

  • BACC Author Team (2008) Assessment of climate change for the Baltic sea basin. Regional climate series. Springer, Berlin/Heidelberg, 473 pp

    Google Scholar 

  • Beare DJ, Burns F, Greig A, Jones EG, Peach K, Kienzle M, McKenzie E, Reid DG (2004) Long-term increases in prevalence of North sea fishes having southern biogeographic affinities. Mar Ecol Prog Ser 284:269–278

    Article  Google Scholar 

  • Beaugrand G, Reid PC, Ibanez F, Lindley JA, Edwards M (2002) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–1694

    Article  Google Scholar 

  • Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton effect on cod recruitment in the North sea. Nature 426:661–664

    Article  Google Scholar 

  • Beaugrand G, Edwards M, Brander KM, Luczak C, Ibanez F (2008) Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecol Lett 11:1–12

    Article  Google Scholar 

  • Beddington JR, Agnew DJ, Clark CW (2007) Current problems in the management of marine fisheries. Science 316:1713–1716

    Article  Google Scholar 

  • Behrenfeld MJ, O’Malley RTO, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755

    Article  Google Scholar 

  • Bjornsson B, Steinarsson A (2002) The food-unlimited growth rate of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 59:494–502

    Article  Google Scholar 

  • Brander KM (2007) Global fish production and climate change. Proc Natl Acad Sci 104:19709–19714

    Article  Google Scholar 

  • Brander KM (2009) Impacts of climate change on marine ecosystems and fisheries. J Mar Biol Assoc India 51:1–13

    Google Scholar 

  • Brander KM, Blom G, Borges MF, Erzini K, Henderson G, MacKenzie BR, Mendes H, Ribeiro J, Santos AMP, Toresen R (2003) Changes in fish distribution in the eastern North Atlantic: are we seeing a coherent response to changing temperature? ICES Mar Sci Symp 219:261–270

    Google Scholar 

  • Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR (2009) Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc R Soc B-Biol Sci 276:1883–1888

    Article  Google Scholar 

  • Comeau S, Gorsky G, Jeffree R, Teyssie JL, Gattuso JP (2009) Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–1882

    Article  Google Scholar 

  • Comeau S, Jeffree R, Teyssie JL, Gattuso JP (2010) Response of the Arctic Pteropod Limacina helicina to projected future environmental conditions. Plos One 5

    Google Scholar 

  • Curry R, Mauritzen C (2005) Dilution of the northern North Atlantic Ocean in recent decades. Science 308:1772–1774

    Article  Google Scholar 

  • Doney SC, Mahowald N, Lima I, Feely RA, Mackenzie FT, Lamarque J-F, Rasch PJ (2007) Impact of anthopogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the organic carbon system. Proc Natl Acad Sci USA 104:14580–14585

    Article  Google Scholar 

  • Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci USA 106:12235–12240

    Article  Google Scholar 

  • Drinkwater K, Schrum C, Brander KM (eds) (2010) Cod and future climate change. ICES cooperative research report no. 305, 88 pp

    Google Scholar 

  • Dulvy NK, Rogers SI, Jennings S, Stelzenmuller V, Dye S, Skjoldal H-R (2008) Climate change and deepening of the North sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45:1029–1039

    Article  Google Scholar 

  • Dupont S, Lundve B, Thorndyke M (2010a) Near future ocean acidification increases growth rate of the Lecithotrophic Larvae and Juveniles of the sea star Crossaster papposus. J Exp Zool B Mol Dev Evol 314B:382–389

    Article  Google Scholar 

  • Dupont S, Ortega-Martinez O, Thorndyke M (2010b) Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19:449–462

    Article  Google Scholar 

  • Easterling WE, Aggrawal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana J-F, Schmidhuber J, Tubiello FN (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 273–313

    Google Scholar 

  • Eero M, MacKenzie BR, Köster FW, Gislason H (2011) Multi-decadal responses of a cod (Gadus morhua) population to human-induced trophic changes, exploitation and climate variability. Ecol Appl 21:214–226

    Article  Google Scholar 

  • Eklöf J, Alsterberg C, Havenhand C, Sundbäck K, Wood H, Gamfeldt L (2012) Experimental climate change weakens the insurance effect of biodiversity, submitted to Ecology Letters

    Google Scholar 

  • Ericson JA, Lamare MD, Morely SA, Barker MF (2010) The response of two ecologically important Antarctic invertebrates (Sterechinus neumayeri and Parborlasia corrugatus) to reduced seawater pH: effects on fertilisation and embryonic development. Mar Biol 157:2689–2702. doi:10.1007/s00227-010-1529-y

    Article  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  Google Scholar 

  • Folkvord A (2005) Comparison of size-at-age of larval Atlantic cod (Gadus morhua) from different populations based on size- and temperature-dependent growth models. Can J Fish Aquat Sci 62:1037–1052

    Article  Google Scholar 

  • Frommel AY, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Piatkowski U, Clemmesen C. (2011) Ocean acidification effects on larvae of a commercially important fish pecies, Atlantic cod (Gadhus morhua). Nature Climate Change 2: 42–46.

    Article  Google Scholar 

  • Gazeau F, Quiblier C, Jansen CM, Gattuso JP, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34(7):L07603

    Article  Google Scholar 

  • Gazeau F, Gattuso JP, Dawber C, Pronker AE, Peene F, Peene J, Heip CHR, Middelburg JJ (2010) Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7:2051–2060

    Article  Google Scholar 

  • Gillett NP, Graf HF, Osborn T (2003) Climate change and the North Atlantic oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic oscillation: climatic significance and environmental impact, vol 134. American Geophysical Union, Washington, pp 193–209

    Chapter  Google Scholar 

  • Goddard SV, Fletcher GL (1994) Antifreeze proteins: their role in cod survival and distribution from egg to adult. ICES Mar Sci Symp 198:676–683

    Google Scholar 

  • Gregg WW, Conkright ME, Ginoux P, O’Reilly JE, Casey NW (2003) Ocean primary production and climate: global decadal changes. Geophys Res Lett 30:1809

    Article  Google Scholar 

  • Gruber N (2009) Carbon cycle: fickle trends in the ocean. Nature 458:155–156

    Article  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    Article  Google Scholar 

  • Hansen B, Eliasen SK, Gaard E, Larsen KMH (2005) Climatic effects on plankton and productivity on the Faroe shelf. ICES J Mar Sci: J Conseil 62:1224–1232

    Article  Google Scholar 

  • Hatun H, Payne MR, Beaugrand G, Reid PC, Sando H, Drange H, Hansen B, Jacobsen JA, Bloch D (2009) Large bio-geographical shifts in the north-eastern Atlantic ocean: from the subpolar gyre, via plankton, to blue whiting and pilot whales. Prog Oceanogr 80:149–162

    Article  Google Scholar 

  • Havenhand JN, Schlegel P (2009) Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences 6:3009–3015

    Article  Google Scholar 

  • Havenhand JN, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:R651–R652

    Article  Google Scholar 

  • Havenhand JN, Dupont S, Quinn GP (2010) Designing ocean acidification experiments to maximise inference. In: Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union Pages, Luxembourg, pp 67–80

    Google Scholar 

  • Hedger R, McKenzie E, Heath M, Wright P, Scott B, Gallego A, Bridson J (2004) Analysis of the spatial distributions of mature cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) abundance in the North sea (1980–1999) using generalised additive models. Fish Res 70:17–25

    Article  Google Scholar 

  • Henson SA, Dunne JP, Sarmiento JL (2009) Decadal variability in North Atlantic phytoplankton blooms. J Geophys Res 114:C04013

    Article  Google Scholar 

  • Hiddink JG, ter Hofstede R (2008) Climate induced increases in species richness of marine fishes. Glob Chang Biol 14:453–460

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  Google Scholar 

  • Holliday NP, Hughes SL, Beszczynska-Möller A (2009) ICES report on ocean climate 2008. ICES cooperative research report 298, 66 pp

    Google Scholar 

  • Hurrell JW, Deser C (2010) North Atlantic climate variability: the role of the North Atlantic oscillation. J Mar Syst 79:230

    Article  Google Scholar 

  • ICES (2005) In: Brander KM (ed) Spawning and life history information for North Atlantic cod stocks. ICES cooperative research report 274

    Google Scholar 

  • ICES (2008) In: Tasker ML (ed) The effect of climate change on the distribution and abundance of marine species in the OSPAR Maritime Area. ICES cooperative research report no. 293, 45 pp

    Google Scholar 

  • Iglesias-Rodriguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, von Dassow P, Rehm E, Armbrust EV, Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 world. Science 320:336–340

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC), 996 pp

    Google Scholar 

  • Jackson JBC et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    Article  Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, Langodon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. NSF, NOAA, USGS, Contribution No. 2897 from NOAA/Pacific marine environmental laboratory

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett. doi:10.1111/j.1461-0248.2010.01518.x

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    Article  Google Scholar 

  • Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169

    Article  Google Scholar 

  • Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98

    Article  Google Scholar 

  • Kurihara H, Asai T, Kato S, Ishimatsu A (2009) Effects of elevated pCO(2) on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4:225–233

    Article  Google Scholar 

  • Langer G, Nehrke G, Probert I, Ly J, Ziveri P (2009) Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6:2637–2646

    Article  Google Scholar 

  • Lehodey P, Chai F, Hampton J (2003) Modelling climate-related variability of tuna populations from a coupled ocean biogeochemical-populations dynamics model. Fish Oceanogr 12:483–494

    Article  Google Scholar 

  • Lindegren A, Mollmann C, Nielsen A, Stenseth NC (2009) Preventing the collapse of the Baltic cod stock through an ecosystem-based management approach. Proc Natl Acad Sci 106:14722–14727

    Article  Google Scholar 

  • Lindegren M, Möllmann C, Nielsen A, Brander K, MacKenzie B, Stenseth NC (2010) Ecological forecasting under climate change: the case of Baltic cod. Phil Trans R Soc Lond B

    Google Scholar 

  • Loeng H et al (2005) Marine systems. In: Berner J, Symon C, Arris L et al (eds) Arctic climate impacts assessment. Cambridge University Press, Cambridge, UK, pp 453–538

    Google Scholar 

  • McPhaden MJ, Zhang D (2002) Slowdown of the meridional overturning circulation in the upper Pacific ocean. Nature 415:603–608

    Article  Google Scholar 

  • Meier HEM, Kjellström E, Graham LP (2006) Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophys Res Lett 33:L15705. doi:10.1029/2006GL026488

    Article  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Portner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    Article  Google Scholar 

  • Metzger R, Sartoris FJ, Langenbuch M, Portner HO (2007) Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. J Therm Biol 32:144–151

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC, pp 71–83, Chapter 3

    Google Scholar 

  • Ojaveer H, MacKenzie BR (2007) Historical development of fisheries in northern Europe–reconstructing chronology of interactions between nature and man. Fish Res 87:102–105

    Article  Google Scholar 

  • Omstedt A, Gustafsson E, Wesslander K (2009) Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water. Cont Shelf Res 29:870–885

    Article  Google Scholar 

  • Omstedt A, Edman M, Anderson LG, Laudon H (2010) Factors influencing the acid-base (pH) balance in the Baltic Sea: a sensitivity analysis. Tellus B Chem Phys Meteorol 62:280–295

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA (2009) The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob Chang Biol 15:2123–2136

    Article  Google Scholar 

  • Pechenik JA (1987) Environmental influences on larval survival and development. In: Geise AC, Pearce JS, Pearce VB (eds) Reproduction of marine invertebrates, vol 9. Blackwell Scientific Publications, Palo Alto, pp 551–608

    Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    Article  Google Scholar 

  • Perry RI, Cury P, Brander K, Jennings S, Möllmann C, Planque B (2010) Sensitivity of marine systems to climate and fishing: concepts, issues and management responses. J Mar Syst 79:427–435

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  Google Scholar 

  • Quero J-C, Du Buit M-H, Vayne J-J (1998) Les observations de poissons tropicaux et le rechauffement des eaux dans l’Atlantique europeen. Oceanolog Acta 21:345–351

    Article  Google Scholar 

  • Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson A (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society, London

    Google Scholar 

  • Riebesell U (2004) Effects of CO2 enrichment on marine phytoplankton. J Oceanogr 60:719–729

    Article  Google Scholar 

  • Rindorf A, Levy P (2006) Warm, windy winters drive cod north and homing of spawners keeps them there. J Appl Ecol 43:445–453

    Article  Google Scholar 

  • Root TL, MacMynowski P, Mastandrea MD, Schneider SH (2005) Human-modified temperatures induce species changes: joint attribution. Proc Natl Acad Sci 102:7465–7469

    Article  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  Google Scholar 

  • Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Orr J, Soldatov V, Spall SA, Stouffer R (2005) Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles 18

    Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Climate change and food security special feature: global food security under climate change. Proc Natl Acad Sci 104:19703–19708

    Article  Google Scholar 

  • Schmittner A (2005) Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 434:628–633

    Article  Google Scholar 

  • Siegismund F, Schrum C (2001) Decadal changes in the wind forcing over the North Sea. Clim Res 18:39–45

    Article  Google Scholar 

  • Steinacher M, Joos F, Frolicher TL, Plattner GK, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533

    Article  Google Scholar 

  • Stock CA and Dunne J (2009) Controls on the ratio of mesozooplankton production to primary production in marine ecosystems Deep-Sea Research I 57: 95–112

    Article  Google Scholar 

  • Stock CA, Alexander MA, Bond NA, Brander K, Cheung WWL, Curchitser EN, Delworth TL, Dunne JP, Griffies SM, Haltuch MA, Hare JA, Hollowed AB, Lehodey P, Levin SA, Link JS, Rose KA, Rykaczewski RR, Sarmiento JL, Stouffer RJ, Schwing FB, Vecchi GA, Werner FE (2011) On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog Oceanogr 88:1–27

    Article  Google Scholar 

  • Stone DA, Allen MR, Stott PA, Pall P, Min S, Nozawa T, Yukimoto S (2009) The detection and attribution of human influence on climate. Annu Rev Environ Resour 34:1–16

    Article  Google Scholar 

  • Tasker ML (2008) The effect of climate change on the distribution and abundance of marine species in the OSPAR maritime area. ICES cooperative research report no. 293, 49 pp

    Google Scholar 

  • Thomsen J, Gutowska MA, Saphörster J, Heinemann A, Trübenbach K, Fietzke J, Hiebenthal C, Eisenhauer A, Körtzinger A, Wahl M, Melzner F (2010) Calcifying invertebrates succeed in a naturally CO2 enriched coastal habitat but are threatened by high levels of future acidification. Biogeosci Discuss 7:5119–5156

    Article  Google Scholar 

  • Tyrrell T, Schneider B, Charalampopoulou A, Riebesell U (2008) Coccolithophores and calcite saturation state in the Baltic and Black seas. Biogeosciences 5:485–494

    Article  Google Scholar 

  • Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci USA 105:18848–18853

    Article  Google Scholar 

  • Worley SJ et al (2005) ICOADS release 2.1 data and products. Int J Climatol 25:823–842

    Article  Google Scholar 

  • Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326:1098–1100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Brander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brander, K., Havenhand, J. (2012). Impacts of Climate Change, Including Acidification, on Marine Ecosystems and Fisheries. In: Brander, K., MacKenzie, B., Omstedt, A. (eds) Climate Impacts on the Baltic Sea: From Science to Policy. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25728-5_5

Download citation

Publish with us

Policies and ethics