Skip to main content

A Resilient Voting Scheme for Improving Secondary Structure Prediction

  • Conference paper
  • 881 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7080))

Abstract

This paper presents a novel approach called Resilient Voting Scheme (RVS), which combines different predictors (experts) with the goal of improving the overall accuracy. As combining multiple experts involves uncertainty and imprecise information, the proposed approach cancels out the impact of bad performers while computing a single collective prediction. RVS uses a genetic algorithm to assign a reliability to each expert, by using the Q3 measure as fitness function. A resilient voting is then used to improve the accuracy of the final prediction. RVS has been tested with well known datasets and has been compared with other state-of-the-art combination techniques (i.e., averaging and stacking). Experimental results demonstrate the validity of the approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Ani, A., Duriche, M.: A new technique for combining multiple classifiers using dempster-shafer theory of evidence. Artificial Intelligence Research 17, 333–361 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Armano, G., Mancosu, G., Milanesi, L., Orro, A., Saba, M., Vargiu, E.: A hybrid genetic-neural system for predicting protein secondary structure. BMC Bioinformatics 6, S3 (2005)

    Article  Google Scholar 

  3. Bystroff, C., Thousson, V., Baker, D.: Hmm-str: A hidden markov model for local sequence structure correlations in proteins. J. Mol. Biol. 301, 173–190 (2000)

    Article  Google Scholar 

  4. Chou, P.Y., Fasman, G.D.: Conformational parameters for amino acids in helical, sheet, and random coil regions calculated from proteins. Biochemistry 13, 211–222 (1974)

    Article  Google Scholar 

  5. Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins: Structure, Function, and Genetics 34, 508–519 (1999)

    Article  Google Scholar 

  6. Eyrich, A.V., Marti-Renom, M.A., Przybylski, D., Madhusudhan, M.S., Fiser, A., Pazos, F., Valencia, A., Sali, A., Rost, B.: Eva: continuous automatic evaluation of protein structure prediction servers. Bioinformatics 17(12), 1242–1243 (2001)

    Article  Google Scholar 

  7. Johansson, R., Bostrom, H., Karlsson, A.: A study on class-specifically discounted belief for ensemble classifiers. In: Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 614–619 (2008)

    Google Scholar 

  8. Jones, D.T.: Protein secondary structure prediction based on position specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)

    Article  Google Scholar 

  9. Ledda, F.: Protein secondary structure prediction: Novel methods and software architectures. In: PhD Thesis, DIEE, University of Cagliari, Italy (2011)

    Google Scholar 

  10. Ledda, F., Milanesi, L., Vargiu, E.: Game: A generic architecture based on multiple experts for predicting protein structures. Communications of SIWN 3, 107–112 (2008)

    Google Scholar 

  11. Lei, C., Karel, M.S.: A generalized adaptive ensemble generation and aggregation approach for multiple classifier systems. Pattern Recognition 42, 629–644 (2009)

    Article  MATH  Google Scholar 

  12. Lin, H.-N., Chang, J.-M., Wu, K.-P., Sung, T.-Y., Hsu, W.-L.: A knowledge based hybrid method for protein secondary structure prediction based on local prediction confidence. Bioinformatics 21, 3227–3233 (2005)

    Article  Google Scholar 

  13. Lin, K.-L., Lin, C.Y., Huang, C.D., Chang, H.M., Yang, C.Y., Lin, C.T., Tang, C.Y., Hsu, D.F.: Feature seclection and combination criteria for improving accuracy in protein structure prediction. IEEE Transactions on Nanobioscience 6, 186–196 (2007)

    Article  Google Scholar 

  14. Liu, Y.C., Lin, C.-Y., Yu, K.-M., Tang, C.-Y.: Rap: Refine a prediction of protein secondary structure. In: Proceedings of 23rd Workshop on Combinatorial Mathematics and Computation Theory, pp. 34–38 (2006)

    Google Scholar 

  15. Maclin, R., Shavlik, J.W.: Combining the predictions of multiple classifiers: Using competitive learning to initialize neural networks. In: Proceedings of 14th International Joint Conference on Artificial intelligence (IJCAI 1995), pp. 524–531 (1995)

    Google Scholar 

  16. Matthews, B.W.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta 405, 442–451 (1975)

    Article  Google Scholar 

  17. Mount, D.: Bioinformatics: Sequence and Genome Analysis, 2nd edn. CSHL Press, NY (2004)

    Google Scholar 

  18. Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. Journal of Mol. Biology 202, 865–884 (1988)

    Article  Google Scholar 

  19. Quali, M., King, R.D.: Cascaded multiple classifiers for secondary structure prediction. Protein Science 9, 1162–1176 (2000)

    Article  Google Scholar 

  20. Robert, B., G-Osuna, R., Quek, F.: Attribute bagging: Improving accuracy of classifier ensembles by using random feature subset. Pattern Recognition 36, 1291–1302 (2003)

    Article  MATH  Google Scholar 

  21. Rost, B.: Review: Protein secondary structure prediction continues to rise. J. Struct. Biol. 134, 204–218 (2001)

    Article  Google Scholar 

  22. Rost, B., Sander, C.: Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584–599 (1993)

    Article  Google Scholar 

  23. Rus, S.K., Krogh, A.: Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. J. Comp. Biol. 3, 163–183 (1996)

    Article  Google Scholar 

  24. Taheri, J., Zomaya, A.Y.: A voting scheme to improve the secondary structure prediction. In: Proceedings of ACS/IEEE International Conference on Computer Systems and Applications (AICCSA), pp. 1–7 (2010)

    Google Scholar 

  25. Vogiatzis, D., Frosyniotis, D., Papadopoulos, G.A.: The protein structure prediction module of the prot-grid information system. In: Proceedings of ICEIS, pp. 372–378 (2003)

    Google Scholar 

  26. Ward, J.J., Mcguffin, L.J., Buxton, B.F., Jones, D.T.: Secondary structure prediction with support vector machines. Bioinformatics 19, 1650–1655 (2003)

    Article  Google Scholar 

  27. Zemla, A., Vencolvas, C., Fidelis, K., Rost, B.: A modified definition of SOV, a segment-based measure for protein secondary structure prediction assesment. Proteins 34, 220–223 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hota, C., Ledda, F., Armano, G. (2011). A Resilient Voting Scheme for Improving Secondary Structure Prediction. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2011. Lecture Notes in Computer Science(), vol 7080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25725-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25725-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25724-7

  • Online ISBN: 978-3-642-25725-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics