Advertisement

Antimicrobial Peptides and their Potential Application in Inflammation and Sepsis

  • T. Schuerholz
  • K. Brandenburg
  • G. Marx
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)

Abstract

Starting treatment early is key to increasing survival in patients with severe sepsis and septic shock. The crucial significance of timing has been demonstrated for the treatment of circulatory failure [1], use of antibiotics [2] and use of activated protein C as adjunctive therapy [3]. Whereas it is of vital importance not only to begin anti-infective therapy as soon as possible but to also choose the adequate anti-infective drug [4], the impending problem is the growing number of multiresistant bacteria [5]. Therefore, there is an increasing interest in the identification and development of new anti-infective agents.

Keywords

Septic Shock Severe Sepsis Antimicrobial Peptide Drotrecogin Alfa Human Mononuclear Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377PubMedCrossRefGoogle Scholar
  2. 2.
    Kumar A, Roberts D, Wood KE, et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34: 1589–1596PubMedCrossRefGoogle Scholar
  3. 3.
    Vincent JL, Bernard GR, Beale R, et al (2005) Drotrecogin alfa (activated) treatment in severe sepsis from the global open-label trial ENHANCE: further evidence for survival and safety and implications for early treatment. Crit Care Med 33: 2266–2277PubMedCrossRefGoogle Scholar
  4. 4.
    Valles J, Rello J, Ochagavia A, Garnacho J, Alcala MA (2003) Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest 123: 1615–1624PubMedCrossRefGoogle Scholar
  5. 5.
    Kresken M, Hafner D, Schmitz F-J, Wichelhaus TA, Studiengruppe FD (2009) Resistenzsituation bei klinisch wichtigen Infektionserregern gegenüber Antibiotika in Deutschland und im mitteleuropäischen Raum. Antiinfectives Intelligence, RheinbachGoogle Scholar
  6. 6.
    Steinstraesser L, Kraneburg UM, Hirsch T, et al (2009) Host defense peptides as effector molecules of the innate immune response: a sledgehammer for drug resistance? Int J Mol Sci 10: 3951–3970PubMedCrossRefGoogle Scholar
  7. 7.
    Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30: 505–515PubMedCrossRefGoogle Scholar
  8. 8.
    Skarnes RC, Watson DW (1957) Antimicrobial factors of normal tissues and fluids. Bacteriol Rev 21: 273–294PubMedGoogle Scholar
  9. 9.
    Shafer WM, Qu X, Waring AJ, Lehrer RI (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/ division efflux pump family. Proc Natl Acad Sci USA 95: 1829–1833PubMedCrossRefGoogle Scholar
  10. 10.
    Yount NY, Bayer AS, Xiong YQ, Yeaman MR (2006) Advances in antimicrobial peptide immunobiology. Biopolymers 84: 435–458PubMedCrossRefGoogle Scholar
  11. 11.
    Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10: 179–186PubMedCrossRefGoogle Scholar
  12. 12.
    Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24: 1551–1557PubMedCrossRefGoogle Scholar
  13. 13.
    Semple F, Webb S, Li HN, et al (2010) Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur J Immunol 40: 1073–1078PubMedCrossRefGoogle Scholar
  14. 14.
    Rieg S, Steffen H, Seeber S, et al (2005) Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol 174: 8003–8010PubMedGoogle Scholar
  15. 15.
    Meyer JE, Harder J, Gorogh T, et al (2004) Human beta-defensin-2 in oral cancer with opportunistic Candida infection. Anticancer Res 24: 1025–1030PubMedGoogle Scholar
  16. 16.
    Milner SM, Ortega MR (1999) Reduced antimicrobial peptide expression in human burn wounds. Burns 25: 411–413PubMedCrossRefGoogle Scholar
  17. 17.
    Tao R, Jurevic RJ, Coulton KK, et al (2005) Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother 49: 3883–3888PubMedCrossRefGoogle Scholar
  18. 18.
    Lippross S, Klueter T, Steubesand N, et al (2012) Multiple trauma induces serum production of host defence peptides. Injury (in press)Google Scholar
  19. 19.
    Gryllos I, Tran-Winkler HJ, Cheng MF, et al (2008) Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc Natl Acad Sci USA 105: 16755–16760PubMedCrossRefGoogle Scholar
  20. 20.
    Berkestedt I, Nelson A, Bodelsson M (2008) Endogenous antimicrobial peptide LL-37 induces human vasodilatation. Br J Anaesth 100: 803–809PubMedCrossRefGoogle Scholar
  21. 21.
    Fukumoto K, Nagaoka I, Yamataka A, et al (2005) Effect of antibacterial cathelicidin peptide CAP18/LL-37 on sepsis in neonatal rats. Pediatr Surg Int 21: 20–24PubMedCrossRefGoogle Scholar
  22. 22.
    Torossian A, Gurschi E, Bals R, Vassiliou T, Wulf HF, Bauhofer A (2007) Effects of the antimicrobial peptide LL-37 and hyperthermic preconditioning in septic rats. Anesthesiology 107: 437–441PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang L, Falla TJ (2006) Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother 7: 653–663PubMedCrossRefGoogle Scholar
  24. 24.
    Giles FJ, Rodriguez R, Weisdorf D, et al (2004) A phase III, randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy. Leuk Res 28: 559–565PubMedCrossRefGoogle Scholar
  25. 25.
    Vallespi MG, Glaria LA, Reyes O, Garay HE, Ferrero J, Arana MJ (2000) A Limulus antilipopolysaccharide factor-derived peptide exhibits a new immunological activity with potential applicability in infectious diseases. Clin Diagn Lab Immunol 7: 669–675PubMedGoogle Scholar
  26. 26.
    Ried C, Wahl C, Miethke T, et al (1996) High affinity endotoxin-binding and neutralizing peptides based on the crystal structure of recombinant Limulus anti-lipopolysaccharide factor. J Biol Chem 271: 28120–28127PubMedCrossRefGoogle Scholar
  27. 27.
    Andrä J, Lamata M, Martinez de Tejada G, Bartels R, Koch MH, Brandenburg K (2004) Cyclic antimicrobial peptides based on Limulus anti-lipopolysaccharide factor for neutralization of lipopolysaccharide. Biochem Pharmacol 68: 1297–1307PubMedCrossRefGoogle Scholar
  28. 28.
    Andrä J, Garidel P, Majerle A, et al (2004) Biophysical characterization of the interaction of Limulus polyphemus endotoxin neutralizing protein with lipopolysaccharide. Eur J Biochem 271: 2037–2046PubMedCrossRefGoogle Scholar
  29. 29.
    Andrä J, Howe J, Garidel P, et al (2007) Mechanism of interaction of optimized Limulusderived cyclic peptides with endotoxins: thermodynamic, biophysical and microbiological analysis. Biochem J 406: 297–307PubMedCrossRefGoogle Scholar
  30. 30.
    Brandenburg K, Schromm AB, Gutsmann T (2010) Endotoxins: Structure, function, and recognition: Relationship between structure, function, and activity. Subcell Biochem 53: 53–67PubMedCrossRefGoogle Scholar
  31. 31.
    Pan CY, Chao TT, Chen JC, et al (2007) Shrimp (Penaeus monodon) anti-lipopolysaccharide factor reduces the lethality of Pseudomonas aeruginosa sepsis in mice. Int Immunopharmacol 7: 687–700PubMedCrossRefGoogle Scholar
  32. 32.
    Kowalski I, Kaconis Y, Andrä J, et al (2010) Physicochemical and biological characterization of anti-endotoxin peptides and their influence on lipid properties. Protein Pept Lett 17: 1328–1333PubMedCrossRefGoogle Scholar
  33. 33.
    Gutsmann T, Razquin-Olazaran I, Kowalski I, et al (2010) New antiseptic peptides to protect against endotoxin-mediated shock. Antimicrob Agents Chemother 54: 3817–3824PubMedCrossRefGoogle Scholar
  34. 34.
    Kaconis Y, Kowalski I, J, et al (2011) Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides. Biophys J 100: 2652–2661PubMedCrossRefGoogle Scholar
  35. 35.
    Brandenburg K, Andrä J, Garidel P, Gutsmann T (2011) Peptide-based treatment of sepsis. Appl Microbiol Biotechnol 90: 799–808PubMedCrossRefGoogle Scholar
  36. 36.
    Martinez de Tejada G, Sánchez-Gómez S, Razquin-Olazaran I, et al (2011) Bacterial cell wall compounds as promising targets of antimicrobial agents I. Antimicrobial peptides and lipopolyamines. Curr Drug Targets (in press)Google Scholar
  37. 37.
    Opal SM, Palardy JE, Marra MN, Fisher CJ Jr, McKelligon BM, Scott RW (1994) Relative concentrations of endotoxin-binding proteins in body fluids during infection. Lancet 344: 429–431PubMedCrossRefGoogle Scholar
  38. 38.
    Marra MN, Wilde CG, Griffith JE, Snable JL, Scott RW (1990) Bactericidal/permeabilityincreasing protein has endotoxin-neutralizing activity. J Immunol 144: 662–666PubMedGoogle Scholar
  39. 39.
    Calvano SE, Thompson WA, Marra MN, et al (1994) Changes in polymorphonuclear leukocyte surface and plasma bactericidal/permeability-increasing protein and plasma lipopolysaccharide binding protein during endotoxemia or sepsis. Arch Surg 129: 220–226PubMedCrossRefGoogle Scholar
  40. 40.
    Rintala E, Peuravuori H, Pulkki K, Voipio-Pulkki LM, Nevalainen T (2000) Bactericidal/ permeability-increasing protein (BPI) in sepsis correlates with the severity of sepsis and the outcome. Intensive Care Med 26: 1248–1251PubMedCrossRefGoogle Scholar
  41. 41.
    Levin M, Quint PA, Goldstein B, et al (2000) Recombinant bactericidal/permeabilityincreasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet 356: 961–967PubMedCrossRefGoogle Scholar
  42. 42.
    Duits LA, Rademaker M, Ravensbergen B, et al (2001) Inhibition of hBD-3, but not hBD-1 and hBD-2, mRNA expression by corticosteroids. Biochem Biophys Res Commun 280: 522–525PubMedCrossRefGoogle Scholar
  43. 43.
    Book M, Chen Q, Lehmann LE, et al (2007) Inducibility of the endogenous antibiotic peptide beta-defensin 2 is impaired in patients with severe sepsis. Crit Care 11: R19PubMedCrossRefGoogle Scholar
  44. 44.
    Thomas NJ, Carcillo JA, Doughty LA, Sasser H, Heine RP (2002) Plasma concentrations of defensins and lactoferrin in children with severe sepsis. Pediatr Infect Dis J 21: 34–38PubMedCrossRefGoogle Scholar
  45. 45.
    Berkestedt I, Herwald H, Ljunggren L, Nelson A, Bodelsson M (2010) Elevated plasma levels of antimicrobial polypeptides in patients with severe sepsis. J Innate Immun 2: 478–482PubMedCrossRefGoogle Scholar
  46. 46.
    Li J, Nation RL, Turnidge JD, et al (2006) Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 6: 589–601PubMedCrossRefGoogle Scholar
  47. 47.
    Cruz DN, Antonelli M, Fumagalli R, et al (2009) Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA 301: 2445–2452PubMedCrossRefGoogle Scholar
  48. 48.
    Martin EL, Cruz DN, Monti G, et al (2010) Endotoxin removal: how far from the evidence? The EUPHAS 2 Project. Contrib Nephrol 167: 119–125PubMedCrossRefGoogle Scholar
  49. 49.
    Pini A, Falciani C, Mantengoli E, et al (2010) A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J 24: 1015–1022PubMedCrossRefGoogle Scholar
  50. 50.
    Wu G, Fan X, Li L, et al (2010) Interaction of antimicrobial peptide s-thanatin with lipopolysaccharide in vitro and in an experimental mouse model of septic shock caused by a multidrug-resistant clinical isolate of Escherichia coli. Int J Antimicrob Agents 35: 250–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • T. Schuerholz
  • K. Brandenburg
  • G. Marx

There are no affiliations available

Personalised recommendations