Vasopressin Therapy in Septic Shock

  • S. Rehberg
  • M. Westphal
  • C. Ertmer
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)


Catecholamine-resistant arterial hypotension associated with severe impairment of tissue oxygenation plays a pivotal role in the development of multiple organ failure (MOF) and is associated with increased mortality in septic shock [1]. Therefore, alternative, non-adrenergic treatment strategies are urgently warranted. During recent years, research has increasingly focused on the use of vasopressinergic agents, such as arginine vasopressin (AVP) and terlipressin. Contrary to adrenergic receptors, the sensitivity of vasopressin receptors increases in septic shock [2]. This phenomenon may be explained by autonomic insufficiency, baroreceptor dysfunction [3] and the relative deficiency of endogenous vasopressin that is linked to increased receptor expression and sensitivity [4]. Mechanisms of action further include stimulation of vasopressin 1a receptors (V1aR), inhibition of nitric oxide (NO) synthesis [5], inhibition of ATP-dependent potassium channels [6] and restoration of adrenergic receptor sensitivity [7]. As a consequence, low doses of vasopressin analogs have been shown to increase mean arterial pressure (MAP) in catecholamine-resistant septic shock in numerous experimental [8, 9] and clinical studies [10–13]. In addition, these studies demonstrated a significant reduction in catecholamine requirements and attenuated renal dysfunction in septic shock patients.


Septic Shock Sequential Organ Failure Assessment Arginine Vasopressin Septic Shock Patient Positive Fluid Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Engel C, Brunkhorst FM, Bone HG, et al (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 33: 606–618PubMedCrossRefGoogle Scholar
  2. 2.
    Landry DW, Levin HR, Gallant EM, et al (1997) Vasopressin pressor hypersensitivity in vasodilatory septic shock. Crit Care Med 25: 1279–1282PubMedCrossRefGoogle Scholar
  3. 3.
    Williams TD, Da Costa D, Mathias CJ, Bannister R, Lightman SL (1986) Pressor effect of arginine vasopressin in progressive autonomic failure. Clin Sci (Lond) 71: 173–178Google Scholar
  4. 4.
    Barrett LK, Singer M, Clapp LH (2007) Vasopressin: mechanisms of action on the vasculature in health and in septic shock. Crit Care Med 35: 33–40PubMedCrossRefGoogle Scholar
  5. 5.
    Yamamoto K, Ikeda U, Okada K, Saito T, Shimada K (1997) Arginine vasopressin inhibits nitric oxide synthesis in cytokine-stimulated vascular smooth muscle cells. Hypertens Res 20: 209–216PubMedCrossRefGoogle Scholar
  6. 6.
    Vincent JL, Su F (2008) Physiology and pathophysiology of the vasopressinergic system. Best Pract Res Clin Anaesthesiol 22: 243–252PubMedCrossRefGoogle Scholar
  7. 7.
    Holmes CL, Landry DW, Granton JT (2004) Science Review: Vasopressin and the cardiovascular system part 2 — clinical physiology. Crit Care 8: 15–23PubMedCrossRefGoogle Scholar
  8. 8.
    Rehberg S, Ertmer C, Kohler G, et al (2009) Role of arginine vasopressin and terlipressin as first-line vasopressor agents in fulminant ovine septic shock. Intensive Care Med 35: 1286–1296PubMedCrossRefGoogle Scholar
  9. 9.
    Simon F, Giudici R, Scheuerle A, et al (2009) Comparison of cardiac, hepatic, and renal effects of arginine vasopressin and noradrenaline during porcine fecal peritonitis: a randomized controlled trial. Crit Care 13: R113PubMedCrossRefGoogle Scholar
  10. 10.
    Dunser MW, Mayr AJ, Ulmer H, et al (2003) Arginine vasopressin in advanced vasodnla tory shock: a prospective, randomized, controlled study. Circulation 107: 2313–2319PubMedCrossRefGoogle Scholar
  11. 11.
    Luckner G, Dunser MW, Jochberger S, et al (2005) Arginine vasopressin in 316 patients with advanced vasodilatory shock. Crit Care Med 33: 2659–2666PubMedCrossRefGoogle Scholar
  12. 12.
    Morelli A, Ertmer C, Rehberg S, et al (2009) Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): a randomized, controlled pilot study. Crit Care 13: R130PubMedCrossRefGoogle Scholar
  13. 13.
    Albanese J, Leone M, Delmas A, Martin C (2005) Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Crit Care Med 33: 1897–1902PubMedCrossRefGoogle Scholar
  14. 14.
    Russell J, Walley K, Singer J, et al (2008) Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock. N Engl J Med 358: 877–887PubMedCrossRefGoogle Scholar
  15. 15.
    Vincent JL (2011) We should abandon randomized controlled trials in the intensive care unit. Crit Care Med 38: S534–538CrossRefGoogle Scholar
  16. 16.
    Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327PubMedCrossRefGoogle Scholar
  17. 17.
    Vincent JL (2002) Endocrine support in the critically ill. Crit Care Med 30: 702–703PubMedCrossRefGoogle Scholar
  18. 18.
    Leone M (2009) Terlipressin or europressin? Crit Care 13: 192PubMedCrossRefGoogle Scholar
  19. 19.
    O’Brien A, Clapp L, Singer M (2002) Terlipressin for norepinephrine-resistant septic shock. Lancet 359: 1209–1210CrossRefGoogle Scholar
  20. 20.
    Ertmer C, Rehberg S, Westphal M (2008) Vasopressin analogues in the treatment of shock states: potential pitfalls. Best Pract Res Clin Anaesthesiol 22: 393–406PubMedCrossRefGoogle Scholar
  21. 21.
    Lange M, Morelli A, Ertmer C, et al (2007) Continuous versus bolus infusion of terlipressin in ovine endotoxemia. Shock 28: 623–629PubMedCrossRefGoogle Scholar
  22. 22.
    Asfar P, Hauser B, Ivanyi Z, et al (2005) Low-dose terlipressin during long-term hyperdynamic porcine endotoxemia: effects on hepatosplanchnic perfusion, oxygen exchange, and metabolism. Crit Care Med 33: 373–380PubMedCrossRefGoogle Scholar
  23. 23.
    Asfar P, Pierrot M, Veal N, et al (2003) Low-dose terlipressin improves systemic and splanchnic hemodynamics in fluid-challenged endotoxic rats. Crit Care Med 31: 215–220PubMedCrossRefGoogle Scholar
  24. 24.
    Lauzier F, Levy B, Lamarre P, Lesur O (2006) Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial. Intensive Care Med 32: 1782–1789PubMedCrossRefGoogle Scholar
  25. 25.
    Luckner G, Mayr VD, Jochberger S, et al (2007) Comparison of two dose regimens of arginine vasopressin in advanced vasodilatory shock. Crit Care Med 35: 2280–2285PubMedCrossRefGoogle Scholar
  26. 26.
    Torgersen C, Dunser MW, Wenzel V, et al (2010) Comparing two different arginine vasopressin doses in advanced vasodilatory shock: a randomized, controlled, open-label trial. Intensive Care Med 36: 57–65PubMedCrossRefGoogle Scholar
  27. 27.
    Klinzing S, Simon M, Reinhart K, Bredle DL, Meier-Hellmann A (2003) High-dose vasopressin is not superior to norepinephrine in septic shock. Crit Care Med 31: 2646–50PubMedCrossRefGoogle Scholar
  28. 28.
    Lavigne D (2010) Vasopressin and methylene blue: alternate therapies in vasodilatory shock. Semin Cardiothorac Vasc Anesth 14: 186–189PubMedCrossRefGoogle Scholar
  29. 29.
    Landry DW, Levin HR, Gallant EM, et al (1997) Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 95: 1122–1125PubMedCrossRefGoogle Scholar
  30. 30.
    Rehberg S, Enkhbaatar P, Traber DL (2009) Arginine vasopressin in septic shock: supplement or substitute for norepinephrine? Crit Care 13: 178PubMedCrossRefGoogle Scholar
  31. 31.
    Traber DL (2007) Selective V1a receptor agonists in experimental septic shock. Crit Care 11: P51 (abst)CrossRefGoogle Scholar
  32. 32.
    Rehberg S, Enkhbaatar P, Yamamoto Y, Hasselbach AK, Traber LD, Traber DL (2010) Selective V1a agonism reduces vascular leakage and cardiopulmonary dysfunction in MRSA sepsis. Crit Care 14: P397 (abst)CrossRefGoogle Scholar
  33. 33.
    Edwards RM, Trizna W, Kinter LB (1989) Renal microvascular effects of vasopressin and vasopressin antagonists. Am J Physiol 256: F274–278PubMedGoogle Scholar
  34. 34.
    Kaufmann JE, Lezzi M, Vischer UM (2003) Desmopressin (DDAVP) induces NO production in human endothelial cells via V2 receptor-and cAMP-mediated signaling. J Thromb Haemost 1: 821–828PubMedCrossRefGoogle Scholar
  35. 35.
    Kanwar S, Woodman RC, Poon MC, et al (1995) Desmopressin induces endothelial Pselectin expression and leukocyte rolling in postcapillary venules. Blood 86: 2760–2766PubMedGoogle Scholar
  36. 36.
    Rehberg S, Laporte R, Enkhbaatar P, et al (2009) Arginine vasopressin increases plasma levels of von Willebrand factor in sheep. Crit Care 13: A182CrossRefGoogle Scholar
  37. 37.
    Rehberg S, Ertmer C, Lange M, et al (2010) Role of selective V2-receptor antagonism in septic shock: a randomized, controlled, experimental study. Crit Care 14: R200PubMedCrossRefGoogle Scholar
  38. 38.
    Berde B, Boissonnas RA, Huguenin RL, Sturmer E (1964) Vasopressin analogues with selective pressor activity. Experientia 20: 42–43PubMedCrossRefGoogle Scholar
  39. 39.
    Mihara T, Tarumi T, Sugimoto Y, Chen Z, Kamei C (1999) [Arg8]-vasopressin-induced increase in intracellular Ca2+ concentration in cultured rat hippocampal neurons. Brain Res Bull 49: 343–347PubMedCrossRefGoogle Scholar
  40. 40.
    Rehberg S, Ertmer C, Vincent JL, et al (2011) Role of selective V1a receptor agonism in ovine septic shock. Crit Care Med 39: 119–125PubMedCrossRefGoogle Scholar
  41. 41.
    Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA (2010) Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 39: 259–265CrossRefGoogle Scholar
  42. 42.
    Weidenfeld J, Yirmiya R (1996) Effects of bacterial endotoxin on the glucocorticoid feedback regulation of adrenocortical response to stress. Neuroimmunomodulation 3: 352–357PubMedCrossRefGoogle Scholar
  43. 43.
    Murasawa S, Matsubara H, Kizima K, Maruyama K, Mori Y, Inada M (1995) Glucocorticoids regulate V1a vasopressin receptor expression by increasing mRNA stability in vascular smooth muscle cells. Hypertension 26: 665–669PubMedCrossRefGoogle Scholar
  44. 44.
    Annane D (2009) Vasopressin plus corticosteroids: the shock duo! Crit Care Med 37: 1126–1127PubMedCrossRefGoogle Scholar
  45. 45.
    Russell JA, Walley KR, Gordon AC, et al (2009) Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Crit Care Med 37: 811–818PubMedCrossRefGoogle Scholar
  46. 46.
    Bauer SR, Lam SW, Cha SS, Oyen LJ (2008) Effect of corticosteroids on arginine vasopressin-containing vasopressor therapy for septic shock: a case control study. J Crit Care 23: 500–506PubMedCrossRefGoogle Scholar
  47. 47.
    Torgersen C, Luckner G, Schroder DC, et al (2011) Concomitant arginine-vasopressin and hydrocortisone therapy in severe septic shock: association with mortality. Intensive Care Med 37: 1432–1437PubMedCrossRefGoogle Scholar
  48. 48.
    Lauzier FLesur O (2011) Arginine-vasopressin and corticosteroids in septic shock: engaged but not yet married! Intensive Care Med 37: 1406–1408CrossRefGoogle Scholar
  49. 49.
    Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D (2003) Circulating vasopressin levels in septic shock. Crit Care Med 31: 1752–1758PubMedCrossRefGoogle Scholar
  50. 50.
    Nakada TA, Russell JA, Wellman H, et al (2011) Leucyl/cystinyl aminopeptidase gene variants in septic shock. Chest 139: 1042–1049PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Rehberg
  • M. Westphal
  • C. Ertmer

There are no affiliations available

Personalised recommendations