Metabolomics in Critically ill Patients: Focus on Exhaled Air

  • L. D. J. Bos
  • P. J. Sterk
  • M. J. Schultz
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)

Abstract

The lungs of critically ill patients are under constant threat. Critically ill patients may develop acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome (ARDS). Development of ALI/ARDS frequently mandates tracheal intubation for mechanical ventilation [1]. Tracheal intubation, however, carries the risk of ventilator-associated pneumonia (VAP) [2], whereas mechanical ventilation has the potential to cause so-called ventilator-associated lung injury (VALI) [3]. ALI/ARDS and VALI are diagnosed according to the American-European consensus criteria, which include bilateral pulmonary infiltrates on chest radiography and hypoxia [4].

Keywords

Acute Lung Injury Acute Respiratory Distress Syndrome Biological Marker Respir Crit Electronic Nose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hudson LD, Steinberg KP (1999) Epidemiology of acute lung injury and ARDS. Chest 116 (Suppl 1): 74S–82SPubMedGoogle Scholar
  2. 2.
    Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165: 867–903PubMedCrossRefGoogle Scholar
  3. 3.
    Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116 (Suppl 1): 9S–15SPubMedGoogle Scholar
  4. 4.
    Bernard GR, Artigas A, Brigham KL, et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824PubMedCrossRefGoogle Scholar
  5. 5.
    Pugin J, Verghese G, Widmer MC, Matthay MA (1999) The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med 27: 304–312PubMedCrossRefGoogle Scholar
  6. 6.
    Choi G, Wolthuis EK, Bresser P, et al (2006) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology 105: 689–695PubMedCrossRefGoogle Scholar
  7. 7.
    Wolthuis EK, Choi G, Dessing MC, et al (2008) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology 108: 46–54PubMedCrossRefGoogle Scholar
  8. 8.
    Millo JL, Schultz MJ, Williams C, et al (2004) Compartmentalisation of cytokines and cytokine inhibitors in ventilator-associated pneumonia. Intensive Care Med 30: 68–74PubMedCrossRefGoogle Scholar
  9. 9.
    Schultz MJ, Millo J, Levi M, et al (2004) Local activation of coagulation and inhibition of fibrinolysis in the lung during ventilator associated pneumonia. Thorax 59: 130–135PubMedCrossRefGoogle Scholar
  10. 10.
    Palazzo SJ, Simpson T, Schnapp L (2011) Biomarkers for ventilator-associated pneumonia: Review of the literature. Heart Lung 40: 293–298PubMedCrossRefGoogle Scholar
  11. 11.
    Tzouvelekis A, Pneumatikos I, Bouros D (2005) Serum biomarkers in acute respiratory distress syndrome an ailing prognosticator. Respir Res 6: 78PubMedCrossRefGoogle Scholar
  12. 12.
    Frank JA, Parsons PE, Matthay MA (2006) Pathogenetic significance of biological markers of ventilator-associated lung injury in experimental and clinical studies. Chest 130: 1906–1914PubMedCrossRefGoogle Scholar
  13. 13.
    Nicholson JK, Lindon JC (2008) Systems biology: Metabonomics. Nature 455: 1054–1056PubMedCrossRefGoogle Scholar
  14. 14.
    Duflo Fdr, Debon R, Monneret G, Bienvenu J, Chassard D, Allaouchiche B (2002) Alveolar and serum procalcitonin: diagnostic and prognostic value in ventilator-associated pneumonia. Anesthesiology 96: 74–79PubMedCrossRefGoogle Scholar
  15. 15.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342: 1334–1349PubMedCrossRefGoogle Scholar
  16. 16.
    Frey U, Maksym G, Suki B (2011) Temporal complexity in clinical manifestations of lung disease. J Appl Physiol 110: 1723–1731PubMedCrossRefGoogle Scholar
  17. 17.
    Pugin J, Auckenthaler R, Mili N, Janssens JP, Lew PD, Suter PM (1991) Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am Rev Respir Dis 143: 1121–1129PubMedCrossRefGoogle Scholar
  18. 18.
    Martin TR (1997) Cytokines and the acute respiratory distress syndrome (ARDS): a question of balance. Nat Med 3: 272–273PubMedCrossRefGoogle Scholar
  19. 19.
    Chang DW, Hayashi S, Gharib SA, et al (2008) Proteomic and computational analysis of bronchoalveolar proteins during the course of the acute respiratory distress syndrome. Am J Respir Crit Care Med 178: 701–709PubMedCrossRefGoogle Scholar
  20. 20.
    Auffray C, Adcock IM, Chung KF, Djukanovic R, Pison C, Sterk PJ (2010) An integrative systems biology approach to understanding pulmonary diseases. Chest 137: 1410–1416PubMedCrossRefGoogle Scholar
  21. 21.
    Deigner HP, Baranova AV (2010) Current methods and perspectives in biomarker discovery. Curr Mol Med 10: 113–114PubMedCrossRefGoogle Scholar
  22. 22.
    Serkova NJ, Standiford TJ, Stringer KA (2011) The emerging field of quantitative blood metabolomics for biomarker discovery in critical illnesses. Am J Respir Crit Care Med 184: 647–655PubMedCrossRefGoogle Scholar
  23. 23.
    Broadhurst D, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2: 171–196CrossRefGoogle Scholar
  24. 24.
    Salek RM, Maguire ML, Bentley E, et al (2007) A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 29: 99–108PubMedGoogle Scholar
  25. 25.
    Mao H, Wang H, Wang B, et al (2009) Systemic metabolic changes of traumatic critically ill patients revealed by an nmr-based metabonomic approach. J Proteome Res 8: 5423–5430PubMedCrossRefGoogle Scholar
  26. 26.
    Serkova NJ, Van Rheen Z, Tobias M, Pitzer JE, Wilkinson JE, Stringer KA (2008) Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 295: L152–161PubMedCrossRefGoogle Scholar
  27. 27.
    Stringer KA, Serkova NJ, Karnovsky A, Guire K, Paine R 3rd, Standiford TJ (2011) Metabolic consequences of sepsis-induced acute lung injury revealed by plasma (1)H-nuclear magnetic resonance quantitative metabolomics and computational analysis. Am J Physiol Lung Cell Mol Physiol 300: L4–L11PubMedCrossRefGoogle Scholar
  28. 28.
    Pauling L, Robinson AB, Teranishi R, Cary P (1971) Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci USA 68: 2374–2376PubMedCrossRefGoogle Scholar
  29. 29.
    Moser B, Bodrogi F, Eibl G, Lechner M, Rieder J, Lirk P (2005) Mass spectrometric profile of exhaled breath—field study by PTR-MS. Respir Physiol Neurobiol 145: 295–300PubMedCrossRefGoogle Scholar
  30. 30.
    Manolis A (1983) The diagnostic potential of breath analysis. Clin Chem 29: 5–15PubMedGoogle Scholar
  31. 31.
    Zechman JM, Aldinger S, Labows JN Jr (1986) Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography. J Chromatogr 377: 49–57PubMedGoogle Scholar
  32. 32.
    Shnayderman M, Mansfield B, Yip P, et al (2005) Species-specific bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition. Anal Chem 77: 5930–5937PubMedCrossRefGoogle Scholar
  33. 33.
    Röck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108: 705–725PubMedCrossRefGoogle Scholar
  34. 34.
    Schubert JK, Muller WP, Benzing A, Geiger K (1998) Application of a new method for analysis of exhaled gas in critically ill patients. Intensive Care Med 24: 415–421PubMedCrossRefGoogle Scholar
  35. 35.
    Mendis S, Sobotka PA, Euler DE (1995) Expired hydrocarbons in patients with acute myocardial infarction. Free Radic Res 23: 117–122PubMedCrossRefGoogle Scholar
  36. 36.
    Vautz W, Nolte J, Fobbe R, Baumbach JI (2009) Breath analysis-performance and potential of ion mobility spectrometry. J Breath Res 3: 036004PubMedCrossRefGoogle Scholar
  37. 37.
    Dolch ME, Frey L, Hornuss C, et al (2008) Molecular breath-gas analysis by online mass spectrometry in mechanically ventilated patients: a new software-based method of CO2-controlled alveolar gas monitoring. J Breath Res 2: 037010PubMedCrossRefGoogle Scholar
  38. 38.
    Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI (2009) Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax 64: 744–748PubMedCrossRefGoogle Scholar
  39. 39.
    Friedrich MJ (2009) Scientists seek to sniff out diseases: electronic “noses” may someday be diagnostic tools. JAMA 301: 585–586PubMedCrossRefGoogle Scholar
  40. 40.
    Dutta R, Hines EL, Gardner JW, Boilot P (2002) Bacteria classification using Cyranose 320 electronic nose. Biomed Eng Online 1: 4PubMedCrossRefGoogle Scholar
  41. 41.
    Fend R, Kolk AH, Bessant C, Buijtels P, Klatser PR, Woodman AC (2006) Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. J Clin Microbiol 44: 2039–2045PubMedCrossRefGoogle Scholar
  42. 42.
    Humphreys L, Orme RM, Moore P, et al (2011) Electronic nose analysis of bronchoalveolar lavage fluid. Eur J Clin Invest 41: 52–58PubMedCrossRefGoogle Scholar
  43. 43.
    Carey JR, Suslick KS, Hulkower KI, et al (2011) Rapid identification of bacteria with a disposable colorimetric sensing array. J Am Chem Soc 133: 7571–7576PubMedCrossRefGoogle Scholar
  44. 44.
    Hanson CW, III, Thaler ER (2005) Electronic nose prediction of a clinical pneumonia score: biosensors and microbes. Anesthesiology 102: 63–68PubMedCrossRefGoogle Scholar
  45. 45.
    Shih C-H, Lin Y-J, Lee K-F, Chien P-Y, Drake P (2009) Real-time electronic nose based pathogen detection for respiratory intensive care patients. Sens Actuators B Chem 148: 153–157CrossRefGoogle Scholar
  46. 46.
    Bos LDJ, Fens N, van der Schee MP, Sterk PJ, Schultz MJ (2010) Fast assessment of ALI/ ARDS in the ICU using exhaled breath analysis. Am J Respir Crit Care Med 181: A2583 (abst)Google Scholar
  47. 47.
    Bos LDJ, Sterk PJ, Schultz MJ (2011) Exhaled breath analysis in the diagnosis of acute lung injury. Am J Respir Crit Care Med 183: A1163 (abst)Google Scholar
  48. 48.
    Bossuyt PM, Reitsma JB, Bruns DE, et al (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. BMJ 326: 41–44PubMedCrossRefGoogle Scholar
  49. 49.
    Peng G, Tisch U, Adams O, et al (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4: 669–673PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. D. J. Bos
  • P. J. Sterk
  • M. J. Schultz

There are no affiliations available

Personalised recommendations