The Metabolomic Approach to the Diagnosis of Critical Illness

  • N. Nin
  • J. L. Izquierdo-García
  • J. A. Lorente
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)


Advances in molecular and cell biology over the last two decades, including most notably the sequencing of the human genome, have undoubtedly determined a better understanding of disease pathophysiology, and a more precise identification of populations at risk for certain conditions. However, many questions remain unanswered using the genomic approach alone, including what the gene products and the cell responses to certain insults are, given a certain genetic abnormality. The study of the metabolome offers a unique opportunity to answer some of these questions. The metabolome represents a combination of all the metabolites and intermediate products of metabolism in a biological organism. The study of the metabolome, further down the line from gene structure and function, more closely reflects the activities of the cell at the functional level and magnifies events that occur at the level of the genome, transcriptome and proteome (Fig. 1).


High Performance Liquid Chromatography Acute Lung Injury Critical Illness Exhale Breath Condensate Metabolomic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pauling L, Robinson AB, Teranishi R, Cary P (1971) Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci USA 68: 2374–2376PubMedCrossRefGoogle Scholar
  2. 2.
    Brown FF, Campbell ID, Kuchel PW, Rabenstein DC (1977) Human erythrocyte metabolism studies by 1H spin echo NMR. FEBS Lett 82: 12–16PubMedCrossRefGoogle Scholar
  3. 3.
    Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ (1984) Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem 30: 426–432PubMedGoogle Scholar
  4. 4.
    Nicholson JK, Wilson ID (1989) High-resolution proton magnetic-resonance spectroscopy of biological-fluids. Prog Nucl Magn Reson Spectrosc 21: 449–501CrossRefGoogle Scholar
  5. 5.
    Bollard ME, Garrod S, Holmes E, et al (2000) High-resolution H-1 and H-1-C-13 magic angle spinning NMR spectroscopy of rat liver. Magn Reson Med 44: 201–207PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng LL, Chang IW, Smith BL, Gonzalez RG (1998) Evaluating human breast ductal carcinomas with high-resolution magic-angle spinning proton magnetic resonance spectroscopy. J Magn Reson 135: 194–202PubMedCrossRefGoogle Scholar
  7. 7.
    Marion D, Wuthrich K (1983) Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun 113: 967–974PubMedCrossRefGoogle Scholar
  8. 8.
    Spraul M, Nicholson JK, Lynch MJ, Lindon JC (1994) Application of the one-dimensional TOCSY pulse sequence in 750 MHz 1H-NMR spectroscopy for assignment of endogenous metabolite resonances in biofluids. J Pharm Biom Anal 12: 613–618CrossRefGoogle Scholar
  9. 9.
    Xi Y, de Ropp JS, Viant MR, Woodruff DL, Yu P (2008) Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. Anal Chim Acta 614: 127–133PubMedCrossRefGoogle Scholar
  10. 10.
    Izquierdo-Garcia JL, Peces-Barba G, Heili S, Diaz R, Want E, Ruiz-Cabello J (2011) Is NMR-based metabolomic analysis of exhaled breath condensate accurate? Eur Respir J 37: 468–470PubMedCrossRefGoogle Scholar
  11. 11.
    Yang J, Xu GW, Zheng YF, Kong HW, Pang T, Lv S, Yang Q (2004) Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J Chromatogr B 813: 59–65CrossRefGoogle Scholar
  12. 12.
    Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2: 488–494PubMedCrossRefGoogle Scholar
  13. 13.
    Kaderbhai NN, Broadhurst DI, Ellis DI, Goodacre R, Kell DB (2003) Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comp Funct Genomics 4: 376–391PubMedCrossRefGoogle Scholar
  14. 14.
    Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM (2005) HPLC-MS-based methods for the study of metabonomics. J Chromatogr B 817: 67–76CrossRefGoogle Scholar
  15. 15.
    Wilson ID, Nicholson JK, Castro-Perez J, et al (2005) High resolution “Ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J Proteome Res 4: 591–598PubMedCrossRefGoogle Scholar
  16. 16.
    Winning H, Larsen FH, Bro R, Engelsen SB (2008) Quantitative analysis of NMR spectra with chemometrics. J Magn Reson 190: 26–32PubMedCrossRefGoogle Scholar
  17. 17.
    Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6: 469–479PubMedCrossRefGoogle Scholar
  18. 18.
    Lindon JC, Holmes E, Nicholson JK (2001) Pattern recognition methods and applications in biomedical magnetic resonance. Prog Nucl Magn Reson Spectrosc 39: 1–40CrossRefGoogle Scholar
  19. 19.
    Brereton RG (2007) Applied Chemometrics for Scientists. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  20. 20.
    Serkova NJ, Standiford TJ, Stringer KA (2011) The emerging field of quantitative blood metabolomics for biomarker discovery in critical illnesses. Am J Respir Crit Care Med 184: 647–655PubMedCrossRefGoogle Scholar
  21. 21.
    Lin ZY, Xu PB, Yan SK, et al (2009) A metabonomic approach to early prognostic evaluation of experimental sepsis by HNMR and pattern recognition. NMR Biomed 22: 601–608PubMedCrossRefGoogle Scholar
  22. 22.
    Serkova NJ, Van Rheen Z, Tobias M, Pitzer JE, Wilkinson JE, Stringer KA (2008) Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 295: 152–161CrossRefGoogle Scholar
  23. 23.
    Izquierdo-García JL, Nin N, Jesús Ruíz-Cabello J (2011) A metabolomic approach for the diagnosis of experimental sepsis. Intensive Care Med (in press)Google Scholar
  24. 24.
    Lacy P (2011) Metabolomics of sepsis-induced acute lung injury: A new approach for biomarkers. Am J Physiol Lung Cell Mol Physiol 300: 1–3CrossRefGoogle Scholar
  25. 25.
    Xu PB, Lin ZY, Meng HB, et al (2008) A metabonomic approach to early prognostic evaluation of experimental sepsis. J Infect 56: 474–481PubMedCrossRefGoogle Scholar
  26. 26.
    Lin ZY, Xu PB, Yan SK, et al (2009) A metabonomic approach to early prognostic evaluation of experimental sepsis by (1)H NMR and pattern recognition. NMR Biomed 22: 601–608PubMedCrossRefGoogle Scholar
  27. 27.
    Liu XR, Zheng XF, Ji SZ, et al (2010) Metabolomic analysis of thermally injured and/or septic rats. Burns 36: 992–998PubMedCrossRefGoogle Scholar
  28. 28.
    Ferguson ND, Frutos-Vivar F, Esteban A, et al (2005) Acute respiratory distress syndrome: under recognition by clinicians and diagnostic accuracy of three clinical definitions. Crit Care Med 33: 2228–2234PubMedCrossRefGoogle Scholar
  29. 29.
    Esteban A, Fernández-Segoviano P, Frutos-Vivar F, et al (2004) Comparison of clinical criteria for the acute respiratory distress syndrome with autopsy findings. Ann Intern Med 141: 440–445PubMedCrossRefGoogle Scholar
  30. 30.
    Chang DW, Hayashi S, Gharib SA, et al (2008) Proteomic and computational analysis of bronchoalveolar proteins during the course of the acute respiratory distress syndrome. Am J Respir Crit Care Med 178: 701–709PubMedCrossRefGoogle Scholar
  31. 31.
    Bowler RP, Duda B, Chan ED, et al (2004) Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol 286: L1095–1104PubMedCrossRefGoogle Scholar
  32. 32.
    Howrylak JA, Dolinay T, Lucht L (2009) Discovery of the gene signature for acute lung injury in patients with sepsis. Physiol Genomics 37: 133–139PubMedCrossRefGoogle Scholar
  33. 33.
    Stringer KA, Serkova NJ, Karnovsky A, Guire K, Paine R 3rd, Standiford TJ (2011) Metabolic consequences of sepsis-induced acute lung injury revealed by plasma “H-nuclear magnetic resonance quantitative metabolomics and computational analysis. Am J Physiol Lung Cell Mol Physiol 300: L4–L11PubMedCrossRefGoogle Scholar
  34. 34.
    Nin N, Izquierdo JL, Lorente JA, et al (2011) Metabolomic analysis of pulmonary tissue in an experimental model of ventilator induced lung injury. Am J Respir Crit Care Med 183: A1153 (abst)CrossRefGoogle Scholar
  35. 35.
    Siew ED, Ware LB, Ikizler TA (2011) Biological markers of acute kidney injury. J Am Soc Nephrol 22: 810–820PubMedCrossRefGoogle Scholar
  36. 36.
    Portilla D, Schnackenberg L, Beger RD (2007) Metabolomics as an extension of proteomic analysis: study of acute kidney injury. Semin Nephrol 27: 609–620PubMedCrossRefGoogle Scholar
  37. 37.
    Mao H, Wang H, Wang B et al (2009) Systemic metabolic changes of traumatic critically ill patients revealed by an NMR-based metabonomic approach. J Proteome Res 8: 5423–5430PubMedCrossRefGoogle Scholar
  38. 38.
    Cohen MJ, Serkova NJ, Wiener-Kronish J, Pittet JF, Niemann CU (2010) 1h-NMR-based metabolic signatures of clinical outcomes in trauma patients—beyond lactate and base deficit. J Trauma 69: 31–40PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • N. Nin
  • J. L. Izquierdo-García
  • J. A. Lorente

There are no affiliations available

Personalised recommendations