Cerebral Blood Flow after Cardiac Arrest

  • L. L. A. Bisschops
  • C. W. E. Hoedemaekers
  • J. G. van der Hoeven
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)


Patients resuscitated from a cardiac arrest have a high (in-hospital) mortality rate between 50–90 %. Although in the past few decades more patients have a return of spontaneous circulation (ROSC), overall prognosis has not substantially improved [1] and only a minority of patients survive with a favorable neurological recovery [2]. In 1972, Negovsky described the ‘post-resuscitation syndrome’, a constellation of pathophysiological processes occurring after ROSC. In 2008, the International Liaison Committee on Resuscitation (ILCOR) proposed a new term: The post-cardiac arrest syndrome [3]. Growing understanding of the post-cardiac arrest syndrome has contributed to the development of new therapeutic strategies. For example, mild therapeutic hypothermia was effective in improving neurological outcome after cardiac arrest in two randomized controlled trials [4,5]. These results were recently confirmed in a retrospective, multicenter observational study showing that the implementation of mild therapeutic hypothermia in Dutch intensive care units (ICUs) was associated with a 20 % relative reduction in hospital mortality [6].


Cerebral Blood Flow Cardiac Arrest Mild Therapeutic Hypothermia Cardiac Arrest Patient Cerebrovascular Reactivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eckstein M, Stratton SJ, Chan LS (2005) Cardiac Arrest Resuscitation Evaluation in Los Angeles: CARE-LA. Ann Emerg Med 45: 504–509PubMedCrossRefGoogle Scholar
  2. 2.
    Holzer M, Bernard SA, Hachimi-Idrissi S, Roine RO, Sterz F, Mullner M (2005) Hypothermia for neuroprotection after cardiac arrest: systematic review and individual patient data meta-analysis. Crit Care Med 33: 414–418PubMedCrossRefGoogle Scholar
  3. 3.
    Neumar RW, Nolan JP, Adrie C, et al (2008) Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 118: 2452–2483PubMedCrossRefGoogle Scholar
  4. 4.
    HACA-study group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346: 549–556CrossRefGoogle Scholar
  5. 5.
    Bernard SA, Gray TW, Buist MD, et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346: 557–563PubMedCrossRefGoogle Scholar
  6. 6.
    van der Wal G, Brinkman S, Bisschops LL, et al (2011) Influence of mild therapeutic hypothermia after cardiac arrest on hospital mortality. Crit Care Med 39: 84–88PubMedCrossRefGoogle Scholar
  7. 7.
    Laver S, Farrow C, Turner D, Nolan J (2004) Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med 30: 2126–2128PubMedCrossRefGoogle Scholar
  8. 8.
    Safar P (1993) Cerebral resuscitation after cardiac arrest: research initiatives and future directions. Ann Emerg Med 22: 324–349PubMedCrossRefGoogle Scholar
  9. 9.
    Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C (1988) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46: 281–309CrossRefGoogle Scholar
  10. 10.
    van Lieshout JJ, Secher NH (2008) Point:Counterpoint: Sympathetic activity does/does not influence cerebral blood flow. Point: Sympathetic activity does influence cerebral blood flow. J Appl Physiol 105: 1364–1366PubMedCrossRefGoogle Scholar
  11. 11.
    Edvinsson L (2008) Comments on Point:Counterpoint: Sympathetic activity does/does not influence cerebral blood flow. Sympathetic nerves influence the cerebral circulation. J Appl Physiol 105: 1370–1371PubMedCrossRefGoogle Scholar
  12. 12.
    Ames A, III, Wright RL, Kowada M, Thurston JM, Majno G (1968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52: 437–453PubMedGoogle Scholar
  13. 13.
    Kagstrom E, Smith ML, Siesjo BK (1983) Local cerebral blood flow in the recovery period following complete cerebral ischemia in the rat. J Cereb Blood Flow Metab 3: 170–182PubMedCrossRefGoogle Scholar
  14. 14.
    Hossmann KA (1997) Reperfusion of the brain after global ischemia: hemodynamic disturbances. Shock 8: 95–101PubMedCrossRefGoogle Scholar
  15. 15.
    Bottiger BW, Motsch J, Bohrer H, et al (1995) Activation of blood coagulation after cardiac arrest is not balanced adequately by activation of endogenous fibrinolysis. Circulation 92: 2572–2578PubMedCrossRefGoogle Scholar
  16. 16.
    Trzeciak S, Jones AE, Kilgannon JH, et al (2009) Significance of arterial hypotension after resuscitation from cardiac arrest. Crit Care Med 37: 2895–2903PubMedCrossRefGoogle Scholar
  17. 17.
    Snyder JV, Nemoto EM, Carroll RG, Safar P (1975) Global ischemia in dogs: intracranial pressures, brain blood flow and metabolism. Stroke 6: 21–27PubMedCrossRefGoogle Scholar
  18. 18.
    Safar P, Stezoski W, Nemoto EM (1976) Amelioration of brain damage after 12 minutes’ cardiac arrest in dogs. Arch Neurol 33: 91–95PubMedCrossRefGoogle Scholar
  19. 19.
    Buunk G, van der Hoeven JG, Meinders AE (1997) Cerebrovascular reactivity in comatose patients resuscitated from a cardiac arrest. Stroke 28: 1569–1573PubMedCrossRefGoogle Scholar
  20. 20.
    Beckstead JE, Tweed WA, Lee J, MacKeen WL (1978) Cerebral blood flow and metabolism in man following cardiac arrest. Stroke 9: 569–573PubMedCrossRefGoogle Scholar
  21. 21.
    Nemoto EM, Hossmann KA, Cooper HK (1981) Post-ischemic hypermetabolism in cat brain. Stroke 12: 666–676PubMedCrossRefGoogle Scholar
  22. 22.
    Cohan SL, Mun SK, Petite J, et al (1989) Cerebral blood flow in humans following resuscitation from cardiac arrest. Stroke 20: 761–765PubMedCrossRefGoogle Scholar
  23. 23.
    Peberdy MA, Callaway CW, Neumar RW, et al (2010) Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122 (18 Suppl 3): S768–S786PubMedCrossRefGoogle Scholar
  24. 24.
    Sundgreen C, Larsen FS, Herzog TM, Knudsen GM, Boesgaard S, Aldershvile J (2001) Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke 32: 128–132PubMedCrossRefGoogle Scholar
  25. 25.
    Rincon F (2010) Preserved cerebral coupling and cerebrovascular reactivity after cardiac arrest: lessons learned in the era of therapeutic hypothermia. Crit Care Med 38: 1603–1605PubMedCrossRefGoogle Scholar
  26. 26.
    Sasser HC, Safar P (1999) Arterial hypertension after cardiac arrest is associated with good cerebral outcome in patients. Crit Care Med 27: A29 (abst)CrossRefGoogle Scholar
  27. 27.
    Bisschops LL, Hoedemaekers CW, Simons KS, van der Hoeven JG (2010) Preserved metabolic coupling and cerebrovascular reactivity during mild hypothermia after cardiac arrest. Crit Care Med 38: 1542–1547PubMedCrossRefGoogle Scholar
  28. 28.
    Fischer M, Hossmann KA (1996) Volume expansion during cardiopulmonary resuscitation reduces cerebral no-reflow. Resuscitation 32: 227–240PubMedCrossRefGoogle Scholar
  29. 29.
    Krep H, Breil M, Sinn D, Hagendorff A, Hoeft A, Fischer M (2004) Effects of hypertonic versus isotonic infusion therapy on regional cerebral blood flow after experimental cardiac arrest cardiopulmonary resuscitation in pigs. Resuscitation 63: 73–83PubMedCrossRefGoogle Scholar
  30. 30.
    Korosue K, Heros RC (1992) Mechanism of cerebral blood flow augmentation by hemodilution in rabbits. Stroke 23: 1487–1492PubMedCrossRefGoogle Scholar
  31. 31.
    Wahl M, Deetjen P, Thurau K, Ingvar DH, Lassen NA (1970) Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface. Pflugers Arch 316: 152–163PubMedCrossRefGoogle Scholar
  32. 32.
    Adrogue HJ, Madias NE (1998) Management of life-threatening acid-base disorders. Second of two parts. N Engl J Med 338: 107–111PubMedCrossRefGoogle Scholar
  33. 33.
    Falkenbach P, Kamarainen A, Makela A, et al (2009) Incidence of iatrogenic dyscarbia during mild therapeutic hypothermia after successful resuscitation from out-of-hospital cardiac arrest. Resuscitation 80: 990–993PubMedCrossRefGoogle Scholar
  34. 34.
    Balan IS, Fiskum G, Hazelton J, Cotto-Cumba C, Rosenthal RE (2006) Oximetry-guided reoxygenation improves neurological outcome after experimental cardiac arrest. Stroke 37: 3008–3013PubMedCrossRefGoogle Scholar
  35. 35.
    Bellomo R, Bailey M, Eastwood GM, et al (2011) Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care 15: R90PubMedCrossRefGoogle Scholar
  36. 36.
    Fischer M, Bottiger BW, Popov-Cenic S, Hossmann KA (1996) Thrombolysis using plasminogen activator and heparin reduces cerebral no-reflow after resuscitation from cardiac arrest: an experimental study in the cat. Intensive Care Med 22: 1214–1223PubMedCrossRefGoogle Scholar
  37. 37.
    Royl G, Fuchtemeier M, Leithner C, et al (2008) Hypothermia effects on neurovascular coupling and cerebral metabolic rate of oxygen. Neuroimage 40: 1523–1532PubMedCrossRefGoogle Scholar
  38. 38.
    Nordmark J, Rubertsson S, Mortberg E, Nilsson P, Enblad P (2009) Intracerebral monitoring in comatose patients treated with hypothermia after a cardiac arrest. Acta Anaesthesiol Scand 53: 289–298PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. L. A. Bisschops
  • C. W. E. Hoedemaekers
  • J. G. van der Hoeven

There are no affiliations available

Personalised recommendations