Fluid Resuscitation: Think Microcirculation

  • S. Tanaka
  • A. Harrois
  • J. Duranteau
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)


The goal of fluid resuscitation in intensive care unit (ICU) patients is to restore effective tissue perfusion and oxygen delivery (DO2). Fluid resuscitation must be started as a first-line treatment in the management of septic or hemorrhagic shock. Fluid administration should be titrated to clinical endpoints of perfusion (such as capillary refill and urine output) and also to macrocirculatory parameters of global perfusion. It is recommended that fluids should be given only if changes in preload result in significant changes in stroke volume. However, assessment of the adequacy of resuscitation requires attention to both the macroand the microcirculation. Microcirculatory dysfunction is a central abnormality in septic and hemorragic shock and relationships between the macro- and microcirculations are complex. It is, therefore, impossible to predict the microvascular response after a positive fluid challenge in ICU patients without assessment of the microcirculation. However, techniques to monitor the microcirculation are not yet available for clinical practice.


Septic Shock Severe Sepsis Intensive Care Unit Patient Septic Patient Fluid Resuscitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327PubMedCrossRefGoogle Scholar
  2. 2.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32: 1825–1831PubMedCrossRefGoogle Scholar
  3. 3.
    Trzeciak S, Dellinger RP, Parrillo JE, et al (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49: 88–98PubMedCrossRefGoogle Scholar
  4. 4.
    Ospina-Tascon G, Neves AP, Occhipinti G, et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36: 949–955PubMedCrossRefGoogle Scholar
  5. 5.
    Pottecher J, Deruddre S, Teboul JL, et al (2010) Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med 36: 1867–1874PubMedCrossRefGoogle Scholar
  6. 6.
    Jhanji S, Vivian-Smith A, Lucena-Amaro S, Watson D, Hinds CJ, Pearse RM (2010) Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial. Crit Care 14: R151PubMedCrossRefGoogle Scholar
  7. 7.
    Legrand M, Bezemer R, Kandil A, Demirci C, Payen D, Ince C (2011) The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Intensive Care Med 37: 1534–1542PubMedCrossRefGoogle Scholar
  8. 8.
    Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C (2007) Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15: 15101–15114PubMedCrossRefGoogle Scholar
  9. 9.
    De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent J-L (2010) Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 36: 1813–1825PubMedCrossRefGoogle Scholar
  10. 10.
    Arnold RC, Parrillo JE, Dellinger RP, et al (2009) Point-of-care assessment of microvascular blood flow in critically ill patients. Intensive Care Med 35: 1761–1766PubMedCrossRefGoogle Scholar
  11. 11.
    Ospina-Tascon G, Neves AP, Occhipinti G, et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36: 949–955PubMedCrossRefGoogle Scholar
  12. 12.
    Dubin A, Pozo MO, Casabella CA, et al (2009) Comparison of 6% hydroxyethyl starch 130/0.4 and saline solution for resuscitation of the microcirculation during the early goaldirected therapy of septic patients. J Crit Care 25: 659Google Scholar
  13. 13.
    Verdant CL, De Backer D, Bruhn A, et al (2009) Evaluation of sublingual and gut mucosal microcirculation in sepsis: A quantitative analysis. Crit Care Med 37: 2875–2881PubMedCrossRefGoogle Scholar
  14. 14.
    Moens AL (2005) Flow-mediated vasodilation: A diagnostic instrument, or an experimental tool? Chest 127: 2254–2263PubMedCrossRefGoogle Scholar
  15. 15.
    Bezemer R, Lima A, Myers D, et al (2009) Assessment of tissue oxygen saturation during a vascular occlusion test using near-infrared spectroscopy: the role of probe spacing and measurement site studied in healthy volunteers. Crit Care 13 (Suppl 5): S4CrossRefGoogle Scholar
  16. 16.
    Creteur J, Carollo T, Soldati G, Büchele G, Backer D, Vincent J-L (2007) The prognostic value of muscle StO2 in septic patients. Intensive Care Med 33: 1549–1556PubMedCrossRefGoogle Scholar
  17. 17.
    Doerschug KC, Delsing AS, Schmidt GA, Haynes WG (2007) Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol 293: H1065–H1071PubMedCrossRefGoogle Scholar
  18. 18.
    Leone M, Blidi S, Antonini F, et al (2009) Oxygen tissue saturation is lower in nonsurvivors than in survivors after early resuscitation of septic shock. Anesthesiology 111: 366–371PubMedCrossRefGoogle Scholar
  19. 19.
    Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ (2007) Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock 27: 348–353PubMedCrossRefGoogle Scholar
  20. 20.
    Georger J-F, Hamzaoui O, Chaari A, Maizel J, Richard C, Teboul JL (2010) Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by nearinfrared spectroscopy in severely hypotensive septic patients. Intensive Care Med 36: 1882–1889PubMedCrossRefGoogle Scholar
  21. 21.
    Duranteau J, Sitbon P, Teboul JL, et al (1999) Effects of epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock. Crit Care Med 27: 893–900PubMedCrossRefGoogle Scholar
  22. 22.
    Jin X, Weil MH, Sun S, Tang W, Bisera J, Mason EJ (1998) Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol 85: 2360–2364PubMedGoogle Scholar
  23. 23.
    Dubin A, Murias G, Estenssoro E, et al (2002) Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care 6: 514–520PubMedCrossRefGoogle Scholar
  24. 24.
    Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL (2006) Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med 32: 516–523PubMedCrossRefGoogle Scholar
  25. 25.
    Vallet B, Teboul JL, Cain S, Curtis S (2000) Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89: 1317–1321PubMedGoogle Scholar
  26. 26.
    Vallee F, Mateo J, Dubreuil G, et al (2010) Cutaneous ear lobe Pco at 37 degrees C to evaluate microperfusion in patients with septic shock. Chest 138: 1062–1070PubMedCrossRefGoogle Scholar
  27. 27.
    Schneider A, Johnson L, Goodwin M, Schelleman A, Bellomo R (2011) Bench-to-bedside review: Contrast enhanced ultrasonography-a promising technique to assess renal perfusion in the ICU. Crit Care 15: 157PubMedCrossRefGoogle Scholar
  28. 28.
    Schneider AG, Hofmann L, Wuerzner G, et al (2012) Renal perfusion evaluation with contrast-enhanced ultrasonography. Nephrol Dial Transplant (in press)Google Scholar
  29. 29.
    Larsen LPS (2010) Role of contrast enhanced ultrasonography in the assessment of hepatic metastases: A review. World J Hepatol 2: 8–15PubMedGoogle Scholar
  30. 30.
    Kishimoto N, Mori Y, Nishiue T, et al (2003) Renal blood flow measurement with contrastenhanced harmonic ultrasonography: evaluation of dopamine-induced changes in renal cortical perfusion in humans. Clin Nephrol 59: 423–428PubMedGoogle Scholar
  31. 31.
    Schwenger V, Korosoglou G, Hinkel UP, et al (2006) Real-time contrast-enhanced sonography of renal transplant recipients predicts chronic allograft nephropathy. Am J Transplant 6: 609–615PubMedCrossRefGoogle Scholar
  32. 32.
    Nordström CH (2009) Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst 26: 465–472CrossRefGoogle Scholar
  33. 33.
    Rao GS, Durga P (2011) Changing trends in monitoring brain ischemia: from intracranial pressure to cerebral oximetry. Curr Opin Anaesthesiol 24: 487–494PubMedCrossRefGoogle Scholar
  34. 34.
    Sarrafzadeh AS, Sakowitz OW, Callsen TA, Lanksch WR, Unterberg AW (2002) Detection of secondary insults by brain tissue pO2 and bedside microdialysis in severe head injury. Acta Neurochir Suppl 81: 319–321PubMedGoogle Scholar
  35. 35.
    Kurtz P, Schmidt JM, Claassen J, et al (2010) Anemia is associated with metabolic distress and brain tissue hypoxia after subarachnoid hemorrhage. Neurocrit Care 13: 10–16PubMedCrossRefGoogle Scholar
  36. 36.
    Ellebaek Pedersen M, Qvist N, et al (2009) Peritoneal microdialysis. Early diagnosis of anastomotic leakage after low anterior resection for rectosigmoid cancer. Scand J Surg 98: 148–154PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Tanaka
  • A. Harrois
  • J. Duranteau

There are no affiliations available

Personalised recommendations