The Meaning of Fluid Responsiveness

  • R. Giraud
  • N. Siegenthaler
  • K. Bendjelid
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)


The management of intravenous fluid infusion in intensive care unit (ICU) patients is complex and often corresponds to the clinical imperative for perfusion and tissue oxygenation [1]. This issue is important because it concerns a large proportion of ICU patients. Indeed, inappropriate volume restriction may cause low cardiac output and/or inappropriate use of vasopressive or inotropic drugs [2]. In contrast, adjusted volume restriction avoids excessive fluid infusion and related complications, which include pulmonary edema, microcirculatory dysfunction and organ failure [3, 4]. Excessive fluid resuscitation may also lead to electrolytic disorders such as hypernatremia and hyperchloremic acidosis [5] and/or coagulation impairments [6].


Inferior Vena Cava Venous Return Positive Pressure Ventilation Fluid Responsiveness Pulmonary Artery Occlusion Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Siegenthaler N, Giraud R, Piriou V, Romand JA, Bendjelid K (2010) Microcirculatory alterations in critically ill patients: pathophysiology, monitoring and treatments. Ann Fr Anesth Reanim 29: 135–144PubMedCrossRefGoogle Scholar
  2. 2.
    Nouira S, Elatrous S, Dimassi S, et al (2005) Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock. Crit Care Med 33: 2339–2343PubMedCrossRefGoogle Scholar
  3. 3.
    Arieff AI (1999) Fatal postoperative pulmonary edema: pathogenesis and literature review. Chest 115: 1371–1377PubMedCrossRefGoogle Scholar
  4. 4.
    Boussat S, Jacques T, Levy B, et al (2002) Intravascular volume monitoring and extravascular lung water in septic patients with pulmonary edema. Intensive Care Med 28: 712–718PubMedCrossRefGoogle Scholar
  5. 5.
    Mallie JP, Halperin ML (2001) A new concept to explain dysnatremia: the tonicity balance of entries and exits. Bull Acad Natl Med 185: 119–146PubMedGoogle Scholar
  6. 6.
    Fries D, Innerhofer P, Klingler A, et al (2002) The effect of the combined administration of colloids and lactated Ringer’s solution on the coagulation system: an in vitro study using thrombelastograph coagulation analysis. Anesth Analg 94: 1280–1287PubMedCrossRefGoogle Scholar
  7. 7.
    Bendjelid K (2005) Right atrial pressure: determinant or result of change in venous return? Chest 128: 3639–3640PubMedCrossRefGoogle Scholar
  8. 8.
    Bendjelid K, Romand JA (2003) Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 29: 352–360PubMedCrossRefGoogle Scholar
  9. 9.
    Michard F, Reuter DA (2003) Assessing cardiac preload or fluid responsiveness? It depends on the question we want to answer. Intensive Care Med 29:1396PubMedCrossRefGoogle Scholar
  10. 10.
    Tyberg JV (1992) Venous modulation of ventricular preload. Am Heart J 123: 1098–1104PubMedCrossRefGoogle Scholar
  11. 11.
    Michard F (2005) Changes in arterial pressure during mechanical ventilation. Anesthesiology 103: 419–428PubMedCrossRefGoogle Scholar
  12. 12.
    Monnet X, Rienzo M, Osman D, et al (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34: 1402–1407PubMedCrossRefGoogle Scholar
  13. 13.
    Stetz CW, Miller RG, Kelly GE, Raffin TA (1982) Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis 126: 1001–1004PubMedGoogle Scholar
  14. 14.
    Starling E (1918) The Linacre Lecture On The Law Of The Heart Given At Cambridge, 1915. Longmans, Green and CO, LondonGoogle Scholar
  15. 15.
    Guyton AC, Lindsey AW, Abernathy B, Richardson T (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189: 609–615PubMedGoogle Scholar
  16. 16.
    Levy MN (1979) The cardiac and vascular factors that determine systemic blood flow. Circ Res 44: 739–747PubMedCrossRefGoogle Scholar
  17. 17.
    Giraud R, Siegenthaler N, Bendjelid K (2011) Pulse pressure variation, stroke volume variation and dynamic arterial elastance. Crit Care 15: 414PubMedCrossRefGoogle Scholar
  18. 18.
    Levy MM, Fink MP, Marshall JC, et al (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 29: 530–538PubMedGoogle Scholar
  19. 19.
    Coudray A, Romand JA, Treggiari M, Bendjelid K (2005) Fluid responsiveness in spontaneously breathing patients: a review of indexes used in intensive care. Crit Care Med 33: 2757–2762PubMedCrossRefGoogle Scholar
  20. 20.
    Guyton AC (1955) Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 35: 123–129PubMedGoogle Scholar
  21. 21.
    Duperret S, Lhuillier F, Piriou V, et al (2007) Increased intra-abdominal pressure affects respiratory variations in arterial pressure in normovolaemic and hypovolaemic mechanically ventilated healthy pigs. Intensive Care Med 33: 163–171PubMedCrossRefGoogle Scholar
  22. 22.
    Scharf SM, Caldini P, Ingram RH Jr (1977) Cardiovascular effects of increasing airway pressure in the dog. Am J Physiol 232: H 35–43Google Scholar
  23. 23.
    Permutt S (1963) Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol 18: 924–932PubMedGoogle Scholar
  24. 24.
    Vivien B, Marmion F, Roche S, et al (2006) An evaluation of transcutaneous carbon dioxide partial pressure monitoring during apnea testing in brain-dead patients. Anesthesiology 104: 701–707PubMedCrossRefGoogle Scholar
  25. 25.
    Bendjelid K, Romand JA (2007) Cardiopulmonary interactions in patients under positive pressure ventilation. Ann Fr Anesth Reanim 26: 211–217PubMedCrossRefGoogle Scholar
  26. 26.
    Takata M, Wise RA, Robotham JL (1990) Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol 69: 1961–1972PubMedGoogle Scholar
  27. 27.
    Bendjelid K, Romand JA, Walder B, Suter PM, Fournier G (2002) Correlation between measured inferior vena cava diameter and right atrial pressure depends on the echocardiographic method used in patients who are mechanically ventilated. J Am Soc Echocardiogr 15: 944–949PubMedCrossRefGoogle Scholar
  28. 28.
    Feihl F, Broccard AF (2009) Interactions between respiration and systemic hemodynamics. Part I: basic concepts. Intensive Care Med 35: 45–54CrossRefGoogle Scholar
  29. 29.
    Feihl F, Broccard AF (2009) Interactions between respiration and systemic hemodynamics. Part II: practical implications in critical care. Intensive Care Med 35: 198–205PubMedCrossRefGoogle Scholar
  30. 30.
    Tyberg JV, Taichman GC, Smith ER, Douglas NW, Smiseth OA, Keon WJ (1986) The relationship between pericardial pressure and right atrial pressure: an intraoperative study. Circulation 73: 428–432PubMedCrossRefGoogle Scholar
  31. 31.
    Horst HM, Obeid FN (1986) Hemodynamic response to fluid challenge: a means of assessing volume status in the critically ill. Henry Ford Hosp Med J 34: 90–94PubMedGoogle Scholar
  32. 32.
    Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89: 1309–1310PubMedCrossRefGoogle Scholar
  33. 33.
    Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67: 498–502PubMedCrossRefGoogle Scholar
  34. 34.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89: 1313–1321PubMedCrossRefGoogle Scholar
  35. 35.
    Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4: 282–289PubMedCrossRefGoogle Scholar
  36. 36.
    Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121: 2000–2008PubMedCrossRefGoogle Scholar
  37. 37.
    Osman D, Ridel C, Ray P, et al (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35: 64–68PubMedCrossRefGoogle Scholar
  38. 38.
    Barbier C, Loubieres Y, Schmit C, et al (2004) Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 30: 1740–1746PubMedGoogle Scholar
  39. 39.
    Bendjelid K, Suter PM, Romand JA (2004) The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol 96: 337–342PubMedCrossRefGoogle Scholar
  40. 40.
    Feissel M, Badie J, Merlani PG, Faller JP, Bendjelid K (2005) Pre-ejection period variations predict the fluid responsiveness of septic ventilated patients. Crit Care Med 33: 2534–2539PubMedCrossRefGoogle Scholar
  41. 41.
    Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30: 1834–1837PubMedCrossRefGoogle Scholar
  42. 42.
    Vieillard-Baron A, Chergui K, Rabiller A, et al (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30: 1734–1739PubMedGoogle Scholar
  43. 43.
    Vistisen ST, Struijk JJ, Larsson A (2009) Automated pre-ejection period variation indexed to tidal volume predicts fluid responsiveness after cardiac surgery. Acta Anaesthesiol Scand 53: 534–542PubMedCrossRefGoogle Scholar
  44. 44.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31: 517–523PubMedCrossRefGoogle Scholar
  45. 45.
    Szold A, Pizov R, Segal E, Perel A (1989) The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs. Intensive Care Med 15: 368–371PubMedCrossRefGoogle Scholar
  46. 46.
    Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL (2007) Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med 33: 1125–1132PubMedCrossRefGoogle Scholar
  47. 47.
    Monnet X, Teboul JL (2008) Passive leg raising. Intensive Care Med 34: 659–663PubMedCrossRefGoogle Scholar
  48. 48.
    Ospina-Tascon G, Neves AP, Occhipinti G, et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36: 949–955.PubMedCrossRefGoogle Scholar
  49. 49.
    Pottecher J, Deruddre S, Teboul JL, et al (2010) Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med 36: 1867–1874PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. Giraud
  • N. Siegenthaler
  • K. Bendjelid

There are no affiliations available

Personalised recommendations