Blood Lactate Levels: A Manual for Bedside Use

  • J. Bakker
  • T. C. Jansen
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)


In the first description of increased lactate levels in human beings [1], Joseph Scherer analyzed blood drawn from young women who had just died from what we now call septic shock. Since then increased levels and delayed clearance have been associated with many measures of morbidity and mortality [2, 3]. However, the source of increased lactate levels and/or the cause of its delayed clearance is not linked to one specific pathological process that, when positively influenced by therapy, will change lactate levels and improve outcome. Therefore, the clinical use of lactate levels to improve outcome of critically ill patients is subject to ongoing discussion. To use the complex signal of increased lactate levels and/or delayed clearance the clinician needs to understand the metabolism of lactate.


Septic Shock Lactate Level Arterial Oxygen Saturation Blood Lactate Level Lactate Clearance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kompanje EJ, Jansen TC, van der Hoven B, Bakker J (2007) The first demonstration of lactic acid in human blood in shock by Johann Joseph Scherer (1814–1869) in January 1843. Intensive Care Med 33: 1967–1971PubMedCrossRefGoogle Scholar
  2. 2.
    Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 171: 221–226PubMedCrossRefGoogle Scholar
  3. 3.
    Nguyen HB, Rivers EP, Knoblich BP, et al (2004) Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 32: 1637–1642PubMedCrossRefGoogle Scholar
  4. 4.
    Leverve XM, Mustafa I (2002) Lactate: A key metabolite in the intercellular metabolic interplay. Crit Care 6: 284–285PubMedCrossRefGoogle Scholar
  5. 5.
    Jansen TC, van Bommel J, Bakker J (2009) Blood lactate monitoring in critically ill patients: a systematic health technology assessment. Crit Care Med 37: 2827–2839PubMedCrossRefGoogle Scholar
  6. 6.
    Cain SM, Curtis SE (1991) Experimental models of pathologic oxygen supply dependency. Crit Care Med 19: 603–612PubMedCrossRefGoogle Scholar
  7. 7.
    Ronco JJ, Fenwick JC, Tweeddale MG, et al (1993) Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA 270: 1724–1730PubMedCrossRefGoogle Scholar
  8. 8.
    Friedman G, De Backer D, Shahla M, Vincent JL (1998) Oxygen supply dependency can characterize septic shock. Intensive Care Med 24: 118–123PubMedCrossRefGoogle Scholar
  9. 9.
    Bakker J, Vincent JL (1991) The oxygen supply dependency phenomenon is associated with increased blood lactate levels. J Crit Care 6: 152–159CrossRefGoogle Scholar
  10. 10.
    Vincent JL, Roman A, De Backer D, Kahn RJ (1990) Oxygen uptake/supply dependency. Effects of short-term dobutamine infusion. Am Rev Respir Dis 142: 2–7PubMedCrossRefGoogle Scholar
  11. 11.
    Cain SM (1965) Appearance of excess lactate in aneshetized dogs during anemic and hypoxic hypoxia. Am J Physiol 209: 604–608PubMedGoogle Scholar
  12. 12.
    Rixen D, Siegel JH (2005) Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit Care 9: 441–53PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang H, Spapen H, Benlabed M, Vincent JL (1993) Systemic oxygen extraction can be improved during repeated episodes of cardiac tamponade. J Crit Care 8: 93–99PubMedCrossRefGoogle Scholar
  14. 14.
    Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+K+ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365: 871–875PubMedCrossRefGoogle Scholar
  15. 15.
    Griffith FR Jr, Lockwood JE, Emery FE (1939) Adrenalin lactacidemia: proportionality with dose. Am J Physiol 127: 415–421Google Scholar
  16. 16.
    Wutrich Y, Barraud D, Conrad M, et al (2010) Early increase in arterial lactate concentration under epinephrine infusion is associated with a better prognosis during shock. Shock 34: 4–9PubMedCrossRefGoogle Scholar
  17. 17.
    Levraut J, Ciebiera JP, Chave S, et al (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 157: 1021–1026PubMedCrossRefGoogle Scholar
  18. 18.
    Revelly JP, Tappy L, Martinez A, et al (2005) Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med 33: 2235–2240PubMedCrossRefGoogle Scholar
  19. 19.
    Mustafa I, Roth H, Hanafiah A, et al (2003) Effect of cardiopulmonary bypass on lactate metabolism. Intensive Care Med 29: 1279–1285PubMedCrossRefGoogle Scholar
  20. 20.
    Ranucci M, De Toffol B, Isgro G, Romitti F, Conti D, Vicentini M (2006) Hyperlactatemia during cardiopulmonary bypass: determinants and impact on postoperative outcome. Critical Care 10: R167PubMedCrossRefGoogle Scholar
  21. 21.
    De Gasperi A, Mazza E, Corti A, et al (1997) Lactate blood levels in the perioperative period of orthotopic liver transplantation. Int J Clin Lab Res 27: 123–128PubMedCrossRefGoogle Scholar
  22. 22.
    Joseph SE, Heaton N, Potter D, Pernet A, Umpleby MA, Amiel SA (2000) Renal glucose production compensates for the liver during the anhepatic phase of liver transplantation. Diabetes 49: 450–456PubMedCrossRefGoogle Scholar
  23. 23.
    Levraut J, Ichai C, Petit I, Ciebiera JP, Perus O, Grimaud D (2003) Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill septic patients. Crit Care Med 31: 705–710PubMedCrossRefGoogle Scholar
  24. 24.
    Jansen TC, van Bommel J, Woodward R, Mulder PG, Bakker J (2009) Association between blood lactate levels, Sequential Organ Failure Assessment subscores, and 28-day mortality during early and late intensive care unit stay: a retrospective observational study. Crit Care Med 37: 2369–2374PubMedCrossRefGoogle Scholar
  25. 25.
    Weiskopf RB, Viele MK, Feiner J, et al (1998) Human cardiovascular and metabolic response to acute, severe isovolemic anemia. JAMA 279: 217–221PubMedCrossRefGoogle Scholar
  26. 26.
    Kaufman BS, Rackow EC, Falk JL (1984) The relationship between oxygen delivery and consumption during fluid resuscitation of hypovolemic and septic shock. Chest 85: 336–340PubMedCrossRefGoogle Scholar
  27. 27.
    Packman MI, Rackow EC (1983) Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med 11: 165–169.PubMedCrossRefGoogle Scholar
  28. 28.
    Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 34: 17–60PubMedCrossRefGoogle Scholar
  29. 29.
    Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34: 1333–1337PubMedCrossRefGoogle Scholar
  30. 30.
    De Backer D, Creteur J, Dubois MJ, et al (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34: 403–408PubMedCrossRefGoogle Scholar
  31. 31.
    Creteur J, De Backer D, Vincent JL (1999) A dobutamine test can disclose hepatosplanchnic hypoperfusion in septic patients. Am J Respir Crit Care Med 160: 839–845PubMedCrossRefGoogle Scholar
  32. 32.
    De Backer D, Berre J, Zhang H, Kahn RJ, Vincent JL (1993) Relationship between oxygen uptake and oxygen delivery in septic patients: effects of prostacyclin versus dobutamine. Crit Care Med 21: 1658–1664PubMedCrossRefGoogle Scholar
  33. 33.
    Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360: 1395–1396PubMedCrossRefGoogle Scholar
  34. 34.
    den Uil CA, Caliskan K, Lagrand WK, et al (2009) Dose-dependent benefit of nitroglycerin on microcirculation of patients with severe heart failure. Intensive Care Med 35: 1893–1899CrossRefGoogle Scholar
  35. 35.
    Sakr Y, Chierego M, Piagnerelli M, et al (2007) Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med 35: 1639–1644PubMedCrossRefGoogle Scholar
  36. 36.
    Cabello JB, Burls A, Emparanza JI, Bayliss S, Quinn T (2010) Oxygen therapy for acute myocardial infarction. Cochrane Database Syst Rev CD007160Google Scholar
  37. 37.
    de Jonge E, Peelen L, Keijzers PJ, et al (2008) Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care 12: R156PubMedCrossRefGoogle Scholar
  38. 38.
    Reinhart K, Bloos F, Konig F, Bredle D, Hannemann L (1991) Reversible decrease of oxygen consumption by hyperoxia. Chest 99: 690–694PubMedCrossRefGoogle Scholar
  39. 39.
    Hamzaoui O, Georger JF, Monnet X, et al (2010) Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care 14: R142PubMedCrossRefGoogle Scholar
  40. 40.
    De Backer D, Biston P, Devriendt J, et al (2010) Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 362: 779–789PubMedCrossRefGoogle Scholar
  41. 41.
    Hayes MA, Yau EH, Timmins AC, Hinds CJ, Watson D (1993) Response of critically ill patients to treatment aimed at achieving supranormal oxygen delivery and consumption. Relationship to outcome. Chest 103: 886–895PubMedCrossRefGoogle Scholar
  42. 42.
    Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377PubMedCrossRefGoogle Scholar
  43. 43.
    Reinhart K, Rudolph T, Bredle DL, Hannemann L, Cain SM (1989) Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest 95: 1216–1221PubMedCrossRefGoogle Scholar
  44. 44.
    Pinsky MR, Vincent JL (2005) Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med 33: 1119–1122PubMedCrossRefGoogle Scholar
  45. 45.
    Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA (2010) Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA 303: 739–746PubMedCrossRefGoogle Scholar
  46. 46.
    Jansen TC, van Bommel J, Schoonderbeek FJ, et al (2010) Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 182: 752–761PubMedCrossRefGoogle Scholar
  47. 47.
    Lima A, Jansen TC, van Bommel J, Ince C, Bakker J (2009) The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients. Crit Care Med 37: 934–938PubMedCrossRefGoogle Scholar
  48. 48.
    Lima A, van Bommel J, Jansen TC, Ince C, Bakker J (2009) Low tissue oxygen saturation at the end of early goal-directed therapy is associated with worse outcome in critically ill patients. Crit Care 13 (Suppl 5): S13PubMedCrossRefGoogle Scholar
  49. 49.
    Donati A, Romanelli M, Botticelli L, et al (2009) Recombinant activated protein C treatment improves tissue perfusion and oxygenation in septic patients measured by nearinfrared spectroscopy. Crit Care 13 (Suppl 5): S12PubMedCrossRefGoogle Scholar
  50. 50.
    Spronk PE, Rommes JH, Schaar C, Ince C (2006) Thrombolysis in fulminant purpura: observations on changes in microcirculatory perfusion during successful treatment. Thromb Haemost 95: 576–578PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. Bakker
  • T. C. Jansen

There are no affiliations available

Personalised recommendations