Advertisement

Use of Antifungal Drugs during Continuous Hemofiltration Therapies

  • P. M. Honoré
  • R. Jacobs
  • H. D. Spapen
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)

Abstract

Increased use of blood purification and continuous renal replacement therapies (CRRT) in critically ill patients and advances in these techniques have led to important questions being raised regarding the pharmacokinetics of antimicrobial, and especially antifungal, agents during these processes [1]. Clinicians may have doubts about the efficacy of prescribing antimicrobial regimens proposed for intermittent hemodialysis (IHD) in patients receiving CRRT. This concern is particularly true for antifungal agents for which differences in their pharmacokinetic behavior during IHD and CRRT may not only result in therapeutic failure but may also harm the patient.

Keywords

Antifungal Agent Continuous Renal Replacement Therapy Invasive Aspergillosis Antimicrob Agent Antifungal Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heintz BH, Matzke GR, Dager WE (2009) Antimicrobial dosing concepts and recommendations for critically ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy 29: 562–577PubMedCrossRefGoogle Scholar
  2. 2.
    Susla GM (2009) The impact of continuous renal replacement therapy on drug therapy. Clin Pharmacol Ther 86: 562–565PubMedCrossRefGoogle Scholar
  3. 3.
    Wong-Beringer A, Jacobs RA, Guglielmo BJ (1998) Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 27: 603–618PubMedCrossRefGoogle Scholar
  4. 4.
    Hughes WT, Armstrong D, Bodey G, et al (2002) Guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect 34: 730–751CrossRefGoogle Scholar
  5. 5.
    Walsh TJ, Finberg RW, Arndt C, et al (1999) Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med 340: 764–771PubMedCrossRefGoogle Scholar
  6. 6.
    Ridente Y, Aubard J, Bolard J (1999) Absence in amphotericin B-spiked plasma of the free monomeric drug, as detected by SERS. FEBS Lett 446: 282–286CrossRefGoogle Scholar
  7. 7.
    Adler-Moore JP, Proffitt RT (1993) Development, characterization, efficacy and mode of action of AmBisome, a unilamellar liposomal formulation of amphotericin B. J Liposome Res 3: 429–450CrossRefGoogle Scholar
  8. 8.
    Wasan KM, Lopez-Berestein G (1996) Characteristics of lipid-based formulations that influence their biological behavior in the plasma of patients. Clin Infect Dis 23: 1126–1138PubMedCrossRefGoogle Scholar
  9. 9.
    Boswell GW, Buell D, Bekersky I (1998) AmBisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol 38: 583–559PubMedCrossRefGoogle Scholar
  10. 10.
    Hiemenz JW, Walsh TJ (1996) Lipid formulations of amphotericin B:recent progress and future directions. Clin Infect Dis 22: S 133–134CrossRefGoogle Scholar
  11. 11.
    Diezi TA, Takemoto JK, Davies NM, Kwon GS (2011) Pharmacokinetics and nephrotoxicity of amphotericin B-incorporated poly(ethylene glycol)-block-poly(N-hexyl stearate laspartamide) micelles. J Pharm Sci 100: 2064–2070PubMedCrossRefGoogle Scholar
  12. 12.
    Bellmann R, Egger P, Djanani A, Wiedermann CJ (2004) Pharmacokinetics of amphotericin B lipid complex in critically ill patients on continuous veno-venous haemofiltration. Int J Antimicrob Agents 23: 80–83PubMedCrossRefGoogle Scholar
  13. 13.
    Humphreys H, Oliver DA, Winter R, Warnock DW (1994) Liposomal amphotericin B and continuous venous-venous haemofiltration. J Antimicrob Chemother 33: 1070–1071PubMedCrossRefGoogle Scholar
  14. 14.
    Bellmann R, Egger P, Gritsch W, et al (2003) Amphotericin B lipid formulations in critically ill patients on continuous veno-venous haemofiltration. J Antimicrob Chemother 51: 671–681PubMedCrossRefGoogle Scholar
  15. 15.
    Trotman RL, Williamson JC, Shoemaker DM, Salzer WL (2005) Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis 15: 1159–1166CrossRefGoogle Scholar
  16. 16.
    Muhl E (2005) Antimycotic drugs under continuous renal replacement therapy. Mycoses 48: 56–60PubMedCrossRefGoogle Scholar
  17. 17.
    Fleming RV, Kantarjian HM, Husni R, et al (2001) Comparison of amphotericin B lipid complex (ABLC) vs. AmBisome in the treatment of suspected or documented fungal infections in patients with leukemia. Leuk Lymphoma 40: 511–520PubMedCrossRefGoogle Scholar
  18. 18.
    Honore PM, Jacobs R, Joannes-Boyau O, et al (2011) Septic AKI in ICU patients. Diagnosis, pathophysiology, and treatment type, dosing, and timing: A comprehensive review of recent and future developments. Ann Intensive Care 1: 32PubMedCrossRefGoogle Scholar
  19. 19.
    Rex JH, Bennett JE, Sugar AM, et al (1994) A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. N Engl J Med 331: 1325–1330PubMedCrossRefGoogle Scholar
  20. 20.
    Klepser ME, Wolfe EJ, Jones RN, Nightingale CH, Pfaller MA (1997) Antifungal pharmacodynamic characteristics of fluconazole and amphoteri-cin B tested against Candida albicans. Antimicrob Agents Chemother 41: 1392–1395PubMedGoogle Scholar
  21. 21.
    Shrikhande S, Friess H, Issenegger C, et al (2000) Fluconazole penetration into the pancreas. Antimicrob Agents Chemother 44: 2569–2571PubMedCrossRefGoogle Scholar
  22. 22.
    Hughes CE, Bennett RL, Tuna IC, Beggs WH (1988) Activities of fluconazole (UK 49:858) and ketoconazole against ketoconazole-susceptible and-resistant Candida albicans. Antimicrob Agents Chemother 32: 209–212PubMedCrossRefGoogle Scholar
  23. 23.
    Fischman AJ, Alpert NM, Livnu E, et al (1993) Pharmacokinetics of F-labelled fluconazole in healthy human subjects by positron emission tomography. Antimicrob Agents Chemother 37: 1270–1277PubMedCrossRefGoogle Scholar
  24. 24.
    Yagasaki K, Gando S, Matsuda N, et al (2003) Pharmacokinetics and the most suitable dosing regimen of fluconazole in critically ill patients receiving continuous hemodiafiltration. Intensive Care Med 29: 1844–1848PubMedCrossRefGoogle Scholar
  25. 25.
    Debruyne D, Ryckelynck JP (1993) Clinical pharmacokinetics of fluconazole. Clin Pharmacokinet 24: 10–27PubMedCrossRefGoogle Scholar
  26. 26.
    Kishino S, Koshinami Y, Hosoi T, et al (2001) Effective fluconazole therapy for liver transplant recipients during continuous hemodiafiltration. Ther Drug Monit 23: 4–8PubMedCrossRefGoogle Scholar
  27. 27.
    Bouman CS, van Kan HJ, Koopmans RP, Korevaar JC, Schultz MJ, Vroom MB (2006) Discrepancies between observed and predicted continuous venovenous hemofiltration removal of antimicrobial agents in critically ill patients and the effects on dosing. Intensive Care Med 32: 2013–2019PubMedCrossRefGoogle Scholar
  28. 28.
    Nakasato S, Shah GM, Morrissey RL, Winer RL (1983) Ketoconazole treatment of fungal infection in acute renal failure. Clin Exp Dial Apheresis 7: 191–196PubMedGoogle Scholar
  29. 29.
    Coronel B, Persat F, Dorez D, Moskovtchenko JF, Peins MA, Mercatello A (1994) Itraconazole concentrations during continuous haemodiafiltration. J Antimicrob Chemother 34: 448–449PubMedCrossRefGoogle Scholar
  30. 30.
    Li Y, Theuretzbacher U, Clancy CJ, Nguyen MH, Derendorf H (2010) Pharmacokinetic/ pharmacodynamic profile of posaconazole. Clin Pharmacokinet 49: 379–96PubMedCrossRefGoogle Scholar
  31. 31.
    Abel S, Allan R, Gandelman K, Tomaszewski K, Webb DJ, Wood ND (2008) Pharmacokinetics, safety and tolerance of voriconazole in renally impaired subjects: two prospective, multicentre, open-label, parallel-group volunteer studies. Clin Drug Investig 28: 409–420PubMedCrossRefGoogle Scholar
  32. 32.
    Stella VJ, Rajewski VA (1997) Cyclodextrins: their future in drug formulation and delivery. Pharm Res 14: 556–567PubMedCrossRefGoogle Scholar
  33. 33.
    Gage R, Venn RF, Bayliss MA, Edgington AM, Roffey SJ, Sorrell B (2000) Fluorescence determination of sulphobutylether-beta-cyclo-dextrin in human plasma by size exclusion chromatography with inclusion complex formation. J Pharm Biomed Anal 22: 773–780PubMedCrossRefGoogle Scholar
  34. 34.
    Pea F, Pavan F, Furlanut M (2008) Clinical relevance of pharmacokinetics and pharmacodynamics in cardiac critical care patients. Clin Pharmacokinet 47: 449–462PubMedCrossRefGoogle Scholar
  35. 35.
    Ghannoum M A, Kuhn DM (2002) Voriconazole-better chances for patients with invasive mycoses. Eur J Med Res 7: 242–256PubMedGoogle Scholar
  36. 36.
    von Mach MA, Burhenne J, Weilemann LS (2006) Accumulation of the solvent vehicle sulphobutylether beta cyclodextrin sodium in critically ill patients treated with intravenous voriconazole under renal replacement therapy. BMC Clin Pharmacol 6: 6CrossRefGoogle Scholar
  37. 37.
    Karlsson MO, Lutsar I, Milligan PA (2009) Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother 53: 935–944PubMedCrossRefGoogle Scholar
  38. 38.
    Hafner V, Czock D, Burhenne J, et al (2010) Pharmacokinetics of sulfobutylether-betacyclodextrin and voriconazole in patients with end-stage renal failure during treatment with two hemodialysis systems and hemodiafiltration. Antimicrob Agents Chemother 54: 2596–2602PubMedCrossRefGoogle Scholar
  39. 39.
    Radej J, Krouzecky A, Stehlik P, et al (2011) Pharmacokinetic evaluation of voriconazole treatment in critically ill patients undergoing continuous venovenous hemofiltration. Ther Drug Monit 33: 393–397PubMedCrossRefGoogle Scholar
  40. 40.
    Burkhardt O, Thon S, Burhenne J, Welte T, Kielstein JT (2010) Sulphobutylether-betacyclodextrin accumulation in critically ill patients with acute kidney injury treated with intravenous voriconazole under extended daily dialysis. Int J Antimicrob Agents 36: 93–94PubMedCrossRefGoogle Scholar
  41. 41.
    Myrianthefs P, Markantonis SL, Evaggelopoulou P, et al (2010) Monitoring plasma voriconazole levels following intravenous administration in critically ill patients: an observational study. Int J Antimicrob Agents 35: 468–472PubMedCrossRefGoogle Scholar
  42. 42.
    Kofla G, Ruhnke M (2011) Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis: review of the literature. Eur J Med Res 28: 159–166CrossRefGoogle Scholar
  43. 43.
    Bellmann R (2007) Clinical pharmacokinetics of systemically administered antimycotics. Curr Clin Pharmacol 2: 37–58PubMedCrossRefGoogle Scholar
  44. 44.
    Leitner JM, Meyer B, Fuhrmann V, et al (2011). Multiple-dose pharmacokinetics of anidulafungin during continuous venovenous haemofiltration. J Antimicrob Chemother 66: 880–884PubMedCrossRefGoogle Scholar
  45. 45.
    Migoya EM, Mistry GC, Stone JA, et al (2011) Safety and pharmacokinetics of higher doses of caspofungin in healthy adult participants. J Clin Pharmacol 51: 202–211PubMedCrossRefGoogle Scholar
  46. 46.
    Wiederhold NP, Najvar LK, Bocanegra RA, et al (2011) Caspofungin dose escalation for invasive candidiasis due to resistant candida albicans. Antimicrob Agents Chemother 55: 3254–3260PubMedCrossRefGoogle Scholar
  47. 47.
    Hirata K, Aoyama T, Matsumoto Y, et al (2007) Pharmacokinetics of antifungal agent micafungin in critically ill patients receiving continuous hemodialysis filtration. Yakugaku Zasshi 127: 897–901PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. M. Honoré
  • R. Jacobs
  • H. D. Spapen

There are no affiliations available

Personalised recommendations