Position and the Compromised Respiratory System

  • G. A. Cortes
  • D. J. Dries
  • J. J. Marini
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)


In the critical care setting, positioning is a fundamental tool for implementing an integrated respiratory care strategy. Conversion from the upright to the near-horizontal position used in intensive care is accompanied by important changes in ventilation, perfusion, oxygenation and secretion clearance. These effects are largely accounted for by the influence of gravity on perfusion distribution and by the shifting of pressure vectors as the tissues surrounding the lungs reconfigure. Re-positioning aids or impairs muscle function, affects secretion drainage, influences gas trapping and alters the development or redistribution of lung collapse. Many of these phenomena hold implications for the expression of disease or its management. Mechanical ventilation, sedation, intra-abdominal and intracranial hypertension — common therapies and problems confronted in the intensive care unit (ICU) — are strongly influenced by body orientation.


Prone Position Lung Volume Functional Residual Capacity Dependent Lung Beach Chair Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lumb AB, Nunn JF (1991) Respiratory function and ribcage contribution to ventilation in body positions commonly used during anesthesia. Anesth Analg 73: 422–426PubMedCrossRefGoogle Scholar
  2. 2.
    Suwatanapongched T, Gierada DS, Slone RM, Pilgram TK, Tuteur PG (2003) Variation in diaphragm position and shape in adults with normal pulmonary function. Chest 123: 2019–2027PubMedCrossRefGoogle Scholar
  3. 3.
    Marini JJ, Tyler ML, Hudson LD, Davis BS, Huseby JS (1984) Influence of head-dependent positions on lung volume and oxygen saturation in chronic air-flow obstruction. Am Rev Respir Dis 129: 101–105PubMedGoogle Scholar
  4. 4.
    Behrakis PK, Baydur A, Jaeger MJ, Milic-Emili J (1983) Lung mechanics in sitting and horizontal body positions. Chest 83: 643–646PubMedCrossRefGoogle Scholar
  5. 5.
    Pelosi P, Croci M, Calappi E, et al (1996) Prone positioning improves pulmonary function in obese patients during general anesthesia. Anesth Analg 83: 578–583PubMedGoogle Scholar
  6. 6.
    Galvin I, Drummond GB, Nirmalan M (2007) Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br J Anaesth 98: 420–428PubMedCrossRefGoogle Scholar
  7. 7.
    Glenny RW, Lamm WJ, Albert RK, Robertson HT (1991) Gravity is a minor determinant of pulmonary blood flow distribution. J Appl Physiol 71: 620–629PubMedGoogle Scholar
  8. 8.
    Nyren S, Radell P, Lindahl S, et al (2010) Lung ventilation and perfusion in prone and supine postures with reference to anesthetized and mechanically ventilated healthy volunteers. Anesthesiology 112: 682–687PubMedCrossRefGoogle Scholar
  9. 9.
    Hopkins SR, Henderson AC, Levin DL, et al (2007) Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J Appl Physiol 103: 240–248PubMedCrossRefGoogle Scholar
  10. 10.
    Keilholz SD, Knight-Scott J, Christopher JM, Mai VM, Berr SS (2001) Gravity-dependent perfusion of the lung demonstrated with the FAIRER arterial spin tagging method. Magn Reson Imaging 19: 929–935PubMedCrossRefGoogle Scholar
  11. 11.
    Prisk G, Yamada K, Cortney A, et al (2007) Pulmonary perfusion in the prone and supine postures in the normal human lung. J Appl Physiol 103: 883–894PubMedCrossRefGoogle Scholar
  12. 12.
    Lan CH, Hsu H, Wu Ch, et al (2011) Lateral Position with the remaining lung uppermost improves matching of pulmonary ventilation and perfusion in pneumonectomized pigs. J Surg Res 167: e55–e61PubMedCrossRefGoogle Scholar
  13. 13.
    Rohdin M, Petersson J, Sundblad P, et al (2003) Effects of gravity on lung diffusing capacity and cardiac output in prone and supine humans. J Appl Physiol 95: 3–10PubMedGoogle Scholar
  14. 14.
    Glenny RW (2009) Determinant of regional ventilation and blood flow in the lung. Intensive Care Med 35: 1833–1842PubMedCrossRefGoogle Scholar
  15. 15.
    Lai-Fook SJ, Rodarte JR (1991) Pleural pressure distribution and its relationship to lung volume and interstitial pressure. J Appl Physiol 70: 967–978PubMedGoogle Scholar
  16. 16.
    Duggan M, Kavanagh BP (2005) Pulmonary atelectasis. Anesthesiology 102: 838–854PubMedCrossRefGoogle Scholar
  17. 17.
    D’angelo E, Agostoni E (1973) Continuous recording of pleural surface pressure at various sites. Respir Physiol 19: 356–368CrossRefGoogle Scholar
  18. 18.
    Hoppin FG, Green ID, Mead J (1969) Distribution of pleural surface pressure in dogs. J Appl Physiol 27: 863–873PubMedGoogle Scholar
  19. 19.
    O’Quin RJ, Marini JJ, Culver BH, Butler J (1985) Transmission of airway pressure to pleural space during lung edema and chest wall restriction. J Appl Physiol 59: 1171–1177Google Scholar
  20. 20.
    Takahashi N, Murakami G, Ishikawa A, Sato TJ, Ito T (2004) Anatomic evaluation of postural bronchial drainage of the lung with special reference to patients with tracheal intubation: which combination of postures provides the best simplification? Chest 125: 935–944PubMedCrossRefGoogle Scholar
  21. 21.
    Leduc D, De Troyer A (2007) Dysfunction of the canine respiratory muscle pump in ascites. J Appl Physiol 102: 650–657PubMedCrossRefGoogle Scholar
  22. 22.
    Leduc D, De Troyer A (2008) Impact of acute ascites on the action of the canine abdominal muscles. J Appl Physiol 104: 1568–1573PubMedCrossRefGoogle Scholar
  23. 23.
    Chang SC, Chang HI, Chen FJ, Shiao GM, Wang SS (1995) Effects of ascites and body position on gas exchange in patients with cirrhosis. Proc Natl Sci Counc Repub China B 19: 143–150PubMedGoogle Scholar
  24. 24.
    Salome CM, King GG, Berend N (2010) Physiology of obesity and effects on lung function. J Appl Physiol 108: 206–211PubMedCrossRefGoogle Scholar
  25. 25.
    Yamane T, Date T Michifumi T, et al (2008) Hypoxemia in inferior pulmonary veins in supine position is dependent on obesity. Am J Respir Crit Care Med 178: 295–299PubMedCrossRefGoogle Scholar
  26. 26.
    Pelosi P, Ravagnan I, Giurati G, et al (1999) Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 91: 1221–1231PubMedCrossRefGoogle Scholar
  27. 27.
    Valenza F, Vagginelli F, Tiby A, et al (2007) Effects of the beach chair position, positive end-expiratory pressure, and pneumoperitoneum on respiratory function in morbidly obese patients during anesthesia and paralysis. Anesthesiology 107: 725–732PubMedCrossRefGoogle Scholar
  28. 28.
    Perilli V, Sollazzi L, Bozza P, et al (2000) The effects of the reverse trendelenburg position on respiratory mechanics and blood gases in morbidly obese patients during bariatric surgery. Anesth Analg 91: 1520–1525PubMedCrossRefGoogle Scholar
  29. 29.
    Mattison LE, Coppage L, Alderman DF, Herlong JO, Sahn SA (1997) Pleural effusions in the medical ICU: prevalence, causes, and clinical implications. Chest 111: 1018–1023PubMedCrossRefGoogle Scholar
  30. 30.
    Sonnenblick M, Melzer E, Rosin AJ (1983) Body positional effect on gas exchange in unilateral pleural effusion. Chest 83: 784–786PubMedCrossRefGoogle Scholar
  31. 31.
    Chang SC, Shiao GM, Perng RP (1989) Postural effect on gas exchange in patients with unilateral pleural effusions. Chest 96: 60–63PubMedCrossRefGoogle Scholar
  32. 32.
    Graf J, Fomenti P, Santos A, et al (2011) Pleural effusion complicates monitoring of respiratory mechanics Crit Care Med 39: 1–6CrossRefGoogle Scholar
  33. 33.
    Reignier J, Lejeune O, Renard B, et al (2005) Short-term effects of prone position in chronic obstructive pulmonary disease patients with severe acute and hypercapnic respiratory failure. Intensive Care Med 31: 1128–1131PubMedCrossRefGoogle Scholar
  34. 34.
    Mentzelopoulos SD, Roussos C, Zakynthinos SG (2005) Prone position improves expiratory airway mechanics in severe chronic bronchitis. Eur Respir J 25: 259–268PubMedCrossRefGoogle Scholar
  35. 35.
    Qureshi A (2009) Diaphragm paralysis. Semin Respir Crit Care Med 30: 315–320PubMedCrossRefGoogle Scholar
  36. 36.
    Celli BR (2002) Respiratory management of diaphragm paralysis. Semin Respir Crit Care Med 23: 275–281PubMedCrossRefGoogle Scholar
  37. 37.
    Baydur A, Adkins RH, Milic-Emili (2001) Lung mechanics in individuals with spinal cord injury: effects of injury level and posture. J Appl Physiol 90: 405–411PubMedGoogle Scholar
  38. 38.
    Gattinoni L, Tognoni G, Pesenti A, et al (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345: 568–573PubMedCrossRefGoogle Scholar
  39. 39.
    Taccone P, Pesenti A, Latini R, et al (2009) Prone positioning in patients with moderate and severe acute respiratory distress syndrome. JAMA 302: 1977–1984PubMedCrossRefGoogle Scholar
  40. 40.
    Mancebo J, Fernandez R, Blanch Ll, et al (2006) A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 173: 1233–1239PubMedCrossRefGoogle Scholar
  41. 41.
    Guerin C, Gaillard S, Lemasson S, et al (2004) Effects of systematic prone positioning in hypoxemic acute respiratory failure. JAMA 292: 2379–2387PubMedCrossRefGoogle Scholar
  42. 42.
    Broccard A, Shapiro RS, Schmitz LL, Adams AB, Nahum A, Marini JJ (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28: 295–303PubMedCrossRefGoogle Scholar
  43. 43.
    Gattinoni L, Carlesso E, Taccone P, Polli F, Guérin C, Mancebo J (2010) Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient metaanalysis. Minerva Anestesiol 76: 448–454PubMedGoogle Scholar
  44. 44.
    Chung JH, Kradin RL, Greene RE, Shepard JA, Digumarthy SR (2011) CT predictors of mortality in pathology confirmed ARDS. Eur Radiol 21: 730–737PubMedCrossRefGoogle Scholar
  45. 45.
    Vieillard-Baron A, Charron C, Caille V, Belliard G, Page B, Jardin F (2007) Prone positions unloads the right ventricule in severe ARDS. Chest 132: 1440–1446PubMedCrossRefGoogle Scholar
  46. 46.
    Nakos G, Batistatou A, Galiatsou E, et al (2006) Lung and ‘end organ’ injury due to mechanical ventilation in animals: comparison between the prone and supine positions. Crit Care 10: R38PubMedCrossRefGoogle Scholar
  47. 47.
    Marini JJ, Gattinoni L (2008) Propagation prevention: a complementary mechanism for “lung protective” ventilation in acute respiratory distress syndrome. Crit Care Med 36: 3252–3258PubMedCrossRefGoogle Scholar
  48. 48.
    Graf J, Mentzelopoulos SD, Adams AB, Zhang J, Tashjian JH, Marini JJ (2009) Semi-quantitative tracking of intra-airway fluids by computed tomography. Clin Physiol Funct Imaging 29: 406–413PubMedCrossRefGoogle Scholar
  49. 49.
    Ledwith MB, Bloom S, Maloney-Wilensky E, Coyle B, Polomano RC, Le Roux PD (2010) Effect of body position on cerebral oxygenation and physiologic parameters in patients with acute neurological conditions. J Neurosci Nurs 42: 280–287PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • G. A. Cortes
  • D. J. Dries
  • J. J. Marini

There are no affiliations available

Personalised recommendations