Advertisement

The Neuroendocrine Axis: The Nervous System and Inflammation

  • K. Weismüller
  • M. A. Weigand
  • S. Hofer
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)

Abstract

Inflammation is the physiological answer of the organism to damage affecting its integrity, such as infection or trauma. In inflammation, cells of the immune system release cytokines and other mediators, which contribute to the destruction of bacteria and tissue repair. We distinguish here between pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6 and tumor necrosis factor (TNF)- a, and anti-inflammatory cytokines, e.g., IL-10 and IL-4. Local mechanisms regulate the extent of the inflammatory answer needed to remove the source of the damage and to maintain homeostasis. Humoral as well as neuronal mediators contribute to the regulation of inflammation. Humoral anti-inflammatory mediators, e.g., IL-10 and glucocorticoids, inhibit the release or effect of pro-inflammatory cytokines whereas lipoxins and resolvins contribute to tissue repair. Humoral mediators reach their target cells in distant organs by diffusion or transport by blood flow. Substances which are released by nerves, e.g., norepinephrine and acetylcholine, reach specific cell groups of distant organs rapidly [1].

Keywords

Vagus Nerve Polymicrobial Sepsis Experimental Sepsis Neuroendocrine Axis Serum Tumor Necrosis Factor Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosas-Ballina M, Tracey KJ (2009) Cholinergic control of inflammation. J Intern Med 265: 663–679PubMedCrossRefGoogle Scholar
  2. 2.
    Sternberg E (2006) Neural regulator of innate immunity: A coordinated nonspecific host response to pathogens. Nat Rev Immunol 6: 318–328PubMedCrossRefGoogle Scholar
  3. 3.
    Dantzer R, O’Connor JC, Freund GC, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: When the immune subjugates the brain. Nat Rev Neurosci 9: 46–56PubMedCrossRefGoogle Scholar
  4. 4.
    Woiciechowsky C, Schoning B, Lanksch WR, Volk H-D, Docke WD (1999). Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J Mol Med 77: 769–780PubMedCrossRefGoogle Scholar
  5. 5.
    Ebersoldt M, Sharshar T, Annane D (2007) Sepsis associated delirium. Intensive Care Med 33: 941–950PubMedCrossRefGoogle Scholar
  6. 6.
    Kumar V, Sharma A (2010) Is neuroimmunomodulation a future therapeutic approach for sepsis? Int Immunopharmacol 10: 9–17PubMedCrossRefGoogle Scholar
  7. 7.
    Madden K, Sanders V, Felten D (1995) Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu Rev Pharmacol Toxicol 35: 417–448PubMedCrossRefGoogle Scholar
  8. 8.
    Weihe E, Nohr D, Michel S, et al (1991) Molecular anatomy of the neuro-immune connection. Int J Neurosci 59: 1–23PubMedCrossRefGoogle Scholar
  9. 9.
    John C, Buckingham J (2003) Cytokines: Regulation of hypothalamo-pituitary-adrenocortical axis. Curr Opin Pharmacol 3: 378–384CrossRefGoogle Scholar
  10. 10.
    Woiciechowsky C, Ruprecht S, Docke WD, Volk HD (2000) Role of the sympathetic nervous system and hypothalamic-pituitary-adrenal axis in brain-mediated compensatory anti-inflammatory response. Biomed Rev 11: 29–38Google Scholar
  11. 11.
    Dunn A, Wang J, Ando T (1999) Effects of cytokines on cerebral neurotransmission. Comparison with the effects of stress. Adv Exp Med Biol 461: 117–127PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang J, Swiergiel AH, Palamarchouk VS, Dunn A (1998) Intracerebroventricular infusion of CRF increases extracellular concentrations of norepinephrine in the hippocampus and cortex as determined by in vivo voltammetry. Brain Res Bull 47: 277–284PubMedCrossRefGoogle Scholar
  13. 13.
    Berkenbosch F, de Goeij D, del Rey AE, Besedovsky HO (1989) Neuroendocrine sympathetic and metabolic responses induced by interleukin-1. Neuroendocrinology 50: 570–576PubMedCrossRefGoogle Scholar
  14. 14.
    Shimizu N, Hori T, Nakane H (1994) An interleukin-1beta-induced noradrenaline release in the spleen is mediated by brain corticotropin-releasing factor. Brain Behav Immun 8: 14–23PubMedCrossRefGoogle Scholar
  15. 15.
    Elenkov I, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve — an integrative interface between to super systems: The brain and the immune system. Pharmacol Rev 52: 595–638PubMedGoogle Scholar
  16. 16.
    Miksa M, Das P, Zhou M, et al (2009) Pivotal role of the a2A-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis. PLoS ONE 4:e5504PubMedCrossRefGoogle Scholar
  17. 17.
    Spengler R, Allen RM, Demick DG, Strieter RM, Kunkel SL (1990) Stimulation of alphaadrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol 145: 1430–1434PubMedGoogle Scholar
  18. 18.
    Hasko G, Nemeth ZH, Szabo C, Zsilia G, Salzman AL, Vizi ES (1998) Isoproterenol inhibits IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages. Brain Res Bull 45: 183–187PubMedCrossRefGoogle Scholar
  19. 19.
    Siegmund B, Eigler A, Hartmann G, Hacker U, Endres S (1998) Adrenaline enhances LPS-induced IL-10 synthesis: Evidence for protein kinase A-mediated pathway. Int J Immunopharmacol 20: 57–69PubMedCrossRefGoogle Scholar
  20. 20.
    Bornstein S, Chrousos G (1998) Adrenocorticotrophin (ACTH)-and non-ACTH-mediated regulation of adrenal cortex: neural and immune inputs. J Clin Endocrinol Metab 84: 1729–1736CrossRefGoogle Scholar
  21. 21.
    Matejec R, Löcke G, Mühling J, et al (2008) Release of melanotroph-and corticotrophtype proopiomelanocortin derivates in blood after administration of corticotropin-releasing hormone in patients with septic shock without adrenocortical insufficiency. Shock 31: 553–560CrossRefGoogle Scholar
  22. 22.
    Munford R, Levine J (2001) The crucial role of the systemic response in the innate (nonadaptive) host defense. J Endotoxin Res 7: 327–332PubMedGoogle Scholar
  23. 23.
    Besedovsky H, Del RE, Sorkin E, Dinarello C (1986) Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233: 652–654PubMedCrossRefGoogle Scholar
  24. 24.
    Tracey KJ (2002) The inflammatory reflex. Nature 420: 853–859PubMedCrossRefGoogle Scholar
  25. 25.
    Borovikova L, Ivanova S, Zhang M, et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458–462PubMedCrossRefGoogle Scholar
  26. 26.
    Huston J, Gallowitsch-Puerta M, Ochani M, et al (2007) Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 35: 2762–2768PubMedCrossRefGoogle Scholar
  27. 27.
    Wang H, Yu M, Ochani M, et al (2003) Nicotinic actylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421: 384–388PubMedCrossRefGoogle Scholar
  28. 28.
    Huston J, Ochani M, Rosas-Ballina M, et al (2008) Splenectomy protects against sepsis lethality and reduces serum HMGB1 levels. J Immunol 181: 3535–3539PubMedGoogle Scholar
  29. 29.
    Hofer S, Eisenbach C, Lukic IK, et al (2008) Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit Care Med 36: 404–408PubMedCrossRefGoogle Scholar
  30. 30.
    Rittirsch D, Flierl M, Ward P (2008) Harmful molecular mechanisms in sepsis. Nature 8: 776–787Google Scholar
  31. 31.
    Blalock J (1984) The immune system as a sensory organ. J Immunol 132: 1067–1070PubMedGoogle Scholar
  32. 32.
    Blalock J (2005) The immune system as the sixth sense. J Intern Med 257: 126–138PubMedCrossRefGoogle Scholar
  33. 33.
    Goehler L, Gaykema RP, Hammack SE, Maier SF, Watkins LR (1998) Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res 804: 306–310PubMedCrossRefGoogle Scholar
  34. 34.
    Goehler L, Relton JK, Dripps D, et al (1997) Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: A possible mechanism for immune-to-brain communication. Brain Res Bull 43: 357–364PubMedCrossRefGoogle Scholar
  35. 35.
    Maier SF, Goehler LE, Fleshner M. Watkins LR (1998) The role of the vagus nerve in cytokine-to-brain communication. Ann NY Acad Sci 840: 289–300PubMedCrossRefGoogle Scholar
  36. 36.
    Huston J, Ochani M, Rosas-Ballina M, et al (2006) Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 203: 1623–1628PubMedCrossRefGoogle Scholar
  37. 37.
    Rosas-Ballina M, Ochani M, et al (2008) Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA 105: 11008–11013PubMedCrossRefGoogle Scholar
  38. 38.
    Bellinger D, Felten SY, Lorton D, Felten DL (1989) Origin of noradrenergic innervation of the spleen in rats. Brain Behav Immun 3: 291–311PubMedCrossRefGoogle Scholar
  39. 39.
    Cano G, Sved AF, Rinaman L, Rabin BS, Card JP (2001) Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol 439: 1–18PubMedCrossRefGoogle Scholar
  40. 40.
    Nance D, Burns J (1989) Innervation of the spleen in the rat: Evidence for absence of afferent innervation. Brain Behav Immun 3: 281–290PubMedCrossRefGoogle Scholar
  41. 41.
    Klein R, Wilson SP, Dzielak DJ, Yang WH, Viveros OH (1982) Opioid peptides and noradrenaline co-exist in large dense-cored vesicles from sympathetic nerve. Neuroscience 7: 2255–2261PubMedCrossRefGoogle Scholar
  42. 42.
    Felten D, Ackermann KD, Wiegand SJ, Felten SY (1987) Noradrenergic sympathetic innervation of the spleen: I. Nerve fibres associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. J Neurosci Res 18: 28–36PubMedCrossRefGoogle Scholar
  43. 43.
    Deng J, Muthu K, Gamelli R, Shankar R, Jones SB (2004) Adrenergic modulation of splenic macrophage cytokine release in polymicrobial sepsis. Am J Physiol Cell Physiol 287:C730–736PubMedCrossRefGoogle Scholar
  44. 44.
    Pena G, Cai B, Ramos L, Vida G, Deitch EA, Ulloa L (2011) Cholinergic regulatory lymphocytes re-establish neuromodulation of innate immune responses in sepsis. J Immunol 187: 718–725PubMedCrossRefGoogle Scholar
  45. 45.
    Vida G, Pena G, Kanashiro A, et al (2011) ß2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J 25: 447–4485CrossRefGoogle Scholar
  46. 46.
    Bulloch K, Damavandy T, Badamchian M (1994) Characterization of choline O-actyltransferase (ChAT) in the BALB/C mouse spleen. Int J Neurosci 76: 141–149PubMedCrossRefGoogle Scholar
  47. 47.
    Lips K, König P, Schatzle K, et al (2006) Coexpression and spatial association of nicotinic acytlcholine receptor subunit alpha7 and alpha 10 in rat sympathetic neurons. J Mol Neurosci 30: 15–16PubMedCrossRefGoogle Scholar
  48. 48.
    Wang H, Liao H, Ochani M, et al (2004) Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 10: 1216–1221PubMedCrossRefGoogle Scholar
  49. 49.
    Peter C, Schmidt K, Hofer S, et al (2010) Effects of physostigmine on microcirculatory alterations during experimental endotoxemia. Shock 33: 405–411PubMedCrossRefGoogle Scholar
  50. 50.
    Ghia J, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM (2006) The vagus nerve: A tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131: 1122–1130PubMedCrossRefGoogle Scholar
  51. 51.
    van Westerloo DJ, Giebelen IA, Florquin S, et al (2006) The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130: 1822–1830PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • K. Weismüller
  • M. A. Weigand
  • S. Hofer

There are no affiliations available

Personalised recommendations