Repair after Acute Lung Injury: Molecular Mechanisms and Therapeutic Opportunities

  • A. González-López
  • G. M. Albaiceta
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)


Acute lung injury (ALI) is a clinical syndrome characterized by impairment in gas exchange and/or lung mechanics that leads to hypoxemia and increased work of breathing (WOB). When respiratory failure occurs, most patients require mechanical ventilation. This clinical scenario is related to high morbidity and mortality rates.


Lung Injury Hepatocyte Growth Factor Acute Lung Injury Respir Crit Therapeutic Opportunity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ventrice EA, Marti-Sistac O, Gonzalvo R, Villagra A, Lopez-Aguilar J, Blanch L (2007) [Molecular and biophysical mechanisms and modulation of ventilator-induced lung injury]. Med Intensiva 31: 73–82PubMedCrossRefGoogle Scholar
  2. 2.
    Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81: 1–5PubMedCrossRefGoogle Scholar
  3. 3.
    de Carvalho ME, Dolhnikoff M, Meireles SI, Reis LF, Martins MA, Deheinzelin D (2007) Effects of overinflation on procollagen type III expression in experimental acute lung injury. Crit Care 11: R23PubMedCrossRefGoogle Scholar
  4. 4.
    Armstrong L, Thickett DR, Mansell JP, et al (1999) Changes in collagen turnover in early acute respiratory distress syndrome. Am J Respir Crit Care Med 160: 1910–1915PubMedCrossRefGoogle Scholar
  5. 5.
    Berthiaume Y, Matthay MA (2007) Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol 159: 350–359PubMedCrossRefGoogle Scholar
  6. 6.
    Bhatia M, Moochhala S (2004) Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol 202: 145–156PubMedCrossRefGoogle Scholar
  7. 7.
    Kubo H (2011) Molecular basis of lung tissue regeneration. Gen Thorac Cardiovasc Surg 59: 231–244PubMedCrossRefGoogle Scholar
  8. 8.
    Lindsay CD (2011) Novel therapeutic strategies for acute lung injury induced by lung damaging agents: the potential role of growth factors as treatment options. Hum Exp Toxicol 30: 701–724PubMedCrossRefGoogle Scholar
  9. 9.
    Davey A, McAuley DF, O’Kane CM (2011) Matrix metalloproteinases in acute lung Injury: mediators of injury and drivers of repair. Eur Respir J 38: 959–970PubMedCrossRefGoogle Scholar
  10. 10.
    Nin N, Lorente JA, de Paula M, et al (2008) Rats surviving injurious mechanical ventilation show reversible pulmonary, vascular and inflammatory changes. Intensive Care Med 34: 948–956PubMedCrossRefGoogle Scholar
  11. 11.
    Gonzalez-Lopez A, Astudillo A, Garcia-Prieto E, et al (2011) Inflammation and matrix remodeling during repair of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 301: L500–509PubMedCrossRefGoogle Scholar
  12. 12.
    Abraham E (2003) Neutrophils and acute lung injury. Crit Care Med 31: S195–199PubMedCrossRefGoogle Scholar
  13. 13.
    Korpos E, Wu C, Sorokin L (2009) Multiple roles of the extracellular matrix in inflammation. Curr Pharm Des 15: 1349–1357PubMedCrossRefGoogle Scholar
  14. 14.
    Lin M, Jackson P, Tester AM, et al (2008) Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal matrix by collagen degradation and production of the chemotactic peptide Pro-Gly-Pro. Am J Pathol 173: 144–153PubMedCrossRefGoogle Scholar
  15. 15.
    Van Lint P, Libert C (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82: 1375–1381PubMedCrossRefGoogle Scholar
  16. 16.
    Harty MW, Muratore CS, Papa EF, et al (2010) Neutrophil depletion blocks early collagen degradation in repairing cholestatic rat livers. Am J Pathol 176: 1271–1281PubMedCrossRefGoogle Scholar
  17. 17.
    Parks WC (2003) Matrix metalloproteinases in lung repair. Eur Respir J Suppl 44:36s–38sPubMedCrossRefGoogle Scholar
  18. 18.
    O’Kane CM, McKeown SW, Perkins GD, et al (2009) Salbutamol up-regulates matrix metalloproteinase-9 in the alveolar space in the acute respiratory distress syndrome. Crit Care Med 37: 2242–2249CrossRefGoogle Scholar
  19. 19.
    Albaiceta GM, Gutierrez-Fernandez A, Parra D, et al (2008) Lack of matrix metalloproteinase-9 worsens ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 294: L535–543PubMedCrossRefGoogle Scholar
  20. 20.
    Nerusu KC, Warner RL, Bhagavathula N, McClintock SD, Johnson KJ, Varani J (2007) Matrix metalloproteinase-3 (stromelysin-1) in acute inflammatory tissue injury. Exp Mol Pathol 83: 169–176PubMedCrossRefGoogle Scholar
  21. 21.
    Yamashita CM, Dolgonos L, Zemans RL, et al (2011) Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis. Am J Pathol 179: 1733–1745PubMedCrossRefGoogle Scholar
  22. 22.
    Albaiceta GM, Gutierrez-Fernandez A, Garcia-Prieto E, et al (2010) Absence or inhibition of matrix metalloproteinase-8 decreases ventilator-induced lung injury. Am J Respir Cell Mol Biol 43: 555–563PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia-Prieto E, Gonzalez-Lopez A, Cabrera S, et al (2010) Resistance to bleomycininduced lung fibrosis in MMP-8 deficient mice is mediated by interleukin-10. PLoS One 5:e13242PubMedCrossRefGoogle Scholar
  24. 24.
    Quintero PA, Knolle MD, Cala LF, Zhuang Y, Owen CA (2010) Matrix metalloproteinase-8 inactivates macrophage inflammatory protein-1 alpha to reduce acute lung inflammation and injury in mice. J Immunol 184: 1575–1588PubMedCrossRefGoogle Scholar
  25. 25.
    Gueders MM, Balbin M, Rocks N, et al (2005) Matrix metalloproteinase-8 deficiency promotes granulocytic allergen-induced airway inflammation. J Immunol 175: 2589–2597PubMedGoogle Scholar
  26. 26.
    Chesnutt AN, Matthay MA, Tibayan FA, Clark JG (1997) Early detection of type III procollagen peptide in acute lung injury. Pathogenetic and prognostic significance. Am J Respir Crit Care Med 156: 840–845PubMedCrossRefGoogle Scholar
  27. 27.
    Quesnel C, Nardelli L, Piednoir P, et al (2010) Alveolar fibroblasts in acute lung injury: biological behaviour and clinical relevance. Eur Respir J 35: 1312–1321PubMedCrossRefGoogle Scholar
  28. 28.
    Yoon HK, Cho HY, Kleeberger SR (2007) Protective role of matrix metalloproteinase-9 in ozone-induced airway inflammation. Environ Health Perspect 115: 1557–1563PubMedCrossRefGoogle Scholar
  29. 29.
    Verghese GM, McCormick-Shannon K, Mason RJ, Matthay MA (1998) Hepatocyte growth factor and keratinocyte growth factor in the pulmonary edema fluid of patients with acute lung injury. Biologic and clinical significance. Am J Respir Crit Care Med 158: 386–394PubMedCrossRefGoogle Scholar
  30. 30.
    Rogel MR, Soni PN, Troken JR, Sitikov A, Trejo HE, Ridge KM (2011) Vimentin is sufficient and required for wound repair and remodeling in alveolar epithelial cells. FASEB J (in press)Google Scholar
  31. 31.
    Losa D, Chanson M, Crespin S (2011) Connexins as therapeutic targets in lung disease. Expert Opin Ther Targets 15: 989–1002PubMedCrossRefGoogle Scholar
  32. 32.
    Vadivel A, Abozaid S, van Haaften T, et al (2010) Adrenomedullin promotes lung angiogenesis, alveolar development, and repair. Am J Respir Cell Mol Biol 43: 152–160PubMedCrossRefGoogle Scholar
  33. 33.
    Liu Y, Sadikot RT, Adami GR, et al (2011) FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa. J Exp Med 208: 1473–1484PubMedCrossRefGoogle Scholar
  34. 34.
    Lee JM, Kwon HJ, Bae SC, Jung HS (2010) Lung tissue regeneration after induced injury in Runx3 KO mice. Cell Tissue Res 341: 465–470PubMedCrossRefGoogle Scholar
  35. 35.
    Plataki M, Lee YD, Rasmussen DL, Hubmayr RD (2011) Poloxamer 188 facilitates the repair of alveolus resident cells in ventilator injured lungs. Am J Respir Crit Care Med 184: 939–947PubMedCrossRefGoogle Scholar
  36. 36.
    Giangreco A, Arwert EN, Rosewell IR, Snyder J, Watt FM, Stripp BR (2009) Stem cells are dispensable for lung homeostasis but restore airways after injury. Proc Natl Acad Sci USA 106: 9286–9291PubMedCrossRefGoogle Scholar
  37. 37.
    Yang KY, Shih HC, How CK, et al (2011) IV delivery of induced pluripotent stem cells attenuates endotoxin-induced acute lung injury in mice. Chest 140: 1243–1253PubMedCrossRefGoogle Scholar
  38. 38.
    Curley GF, Contreras M, Higgins BD, O’Toole DP, Laffey JG (2011) The role of mesenchymal stem cells during repair from ventilator induced lung injury. J Respir Crit Care Med (in press)Google Scholar
  39. 39.
    Plopper CG, St George JA, Read LC, et al (1992) Acceleration of alveolar type II cell differentiation in fetal rhesus monkey lung by administration of EGF. Am J Physiol 262: L313–321PubMedGoogle Scholar
  40. 40.
    Harada C, Kawaguchi T, Ogata-Suetsugu S, et al (2011) EGFR tyrosine kinase inhibition worsens acute lung injury in mice with repairing airway epithelium. Am J Respir Crit Care Med 183: 743–751PubMedCrossRefGoogle Scholar
  41. 41.
    Panoskaltsis-Mortari A, Ingbar DH, Jung P, et al (2000) KGF pretreatment decreases B7 and granzyme B expression and hastens repair in lungs of mice after allogeneic BMT. Am J Physiol Lung Cell Mol Physiol 278: L988–999PubMedGoogle Scholar
  42. 42.
    Dohi M, Hasegawa T, Yamamoto K, Marshall BC (2000) Hepatocyte growth factor attenuates collagen accumulation in a murine model of pulmonary fibrosis. Am J Respir Crit Care Med 162: 2302–2307PubMedCrossRefGoogle Scholar
  43. 43.
    Medford AR, Millar AB (2006) Vascular endothelial growth factor (VEGF) in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): paradox or paradigm? Thorax 61: 621–626PubMedCrossRefGoogle Scholar
  44. 44.
    Perkins GD, McAuley DF, Thickett DR, Gao F (2006) The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 173: 281–287PubMedCrossRefGoogle Scholar
  45. 45.
    Perkins GD, Gao F, Thickett DR (2008) In vivo and in vitro effects of salbutamol on alveolar epithelial repair in acute lung injury. Thorax 63: 215–220PubMedCrossRefGoogle Scholar
  46. 46.
    Matthay MA, Brower RG, Carson S, et al (2011) Randomized, placebo-controlled clinical trial of an aerosolized beta-2 agonist for treatment of acute lung injury. Am J Respir Crit Care Med 184: 561–568PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. González-López
  • G. M. Albaiceta

There are no affiliations available

Personalised recommendations