Advertisement

Role of the Renin-Angiotensin System in ARDS

  • V. Zambelli
  • A. Grassi
  • G. Bellani
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)

Abstract

The renin-angiotensin system (RAS) is a powerful biological system that plays an important role in regulation of systemic blood pressure through the maintenance of fluid and salt homeostasis. It is a multifactorial system since it includes different components (Fig. 1): The first, renin, was discovered in 1898 [1], whereas the discovery of the last component, angiotensin-converting enzyme 2 (ACE 2), is relatively recent, from 2000 [2, 3]. Three kinds of RAS are known: A) circulating, B) local, and C) intracellular.

Keywords

Acute Lung Injury Acute Respiratory Distress Syndrome Severe Acute Respiratory Syndrome Alveolar Epithelial Cell Acute Respiratory Distress Syndrome Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tigerstedt R, Bergman P (1898) Niere und Kreislauf. Scand Arch Physiol 8: 223–271CrossRefGoogle Scholar
  2. 2.
    Donoghue M, Hsieh F, Baronas E, et al (2000) A novel angiotensin-converting enzymerelated carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87: E1–9PubMedCrossRefGoogle Scholar
  3. 3.
    Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275: 33238–33243PubMedCrossRefGoogle Scholar
  4. 4.
    Fyhrquist F, Saijonmaa O (2008) Renin-angiotensin system revisited. J Intern Med 264: 224–236PubMedCrossRefGoogle Scholar
  5. 5.
    Orfanos SE, Mavrommati I, Korovesi I, Roussos C (2004) Pulmonary endothelium in acute lung injury: from basic science to the critically ill. Intensive Care Med 30: 1702–1714PubMedCrossRefGoogle Scholar
  6. 6.
    Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J (2003) Inflammation and angiotensin II. Int J Biochem Cell Biol 35: 881–900PubMedCrossRefGoogle Scholar
  7. 7.
    Gimbrone MA, Alexander RW (1975) Angiotensin II stimulation of prostaglandin production in cultured human vascular endothelium. Science 189: 219–220PubMedCrossRefGoogle Scholar
  8. 8.
    Reddy HK, Sigusch H, Zhou G, Tyagi SC, Janicki JS, Weber KT (1995) Coronary vascular hyperpermeability and angiotensin II. J Lab Clin Med 126: 307–315PubMedGoogle Scholar
  9. 9.
    Krejcy K, Eichler HG, Jilma B, et al (1996) Influence of angiotensin II on circulating adhesion molecules and blood leukocyte count in vivo. Can J Physiol Pharmacol 74: 9–14PubMedCrossRefGoogle Scholar
  10. 10.
    Barnes PJ, Karin M (1997) Nuclear factor-kappa B: A pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066–1071PubMedCrossRefGoogle Scholar
  11. 11.
    Prasad A, Koh KK, Schenke WH, et al (2001) Role of angiotensin II type 1 receptor in the regulation of cellular adhesion molecules in atherosclerosis. Am Heart J 142: 248–253PubMedCrossRefGoogle Scholar
  12. 12.
    Piqueras L, Kubes P, Alvarez A, et al (2000) Angiotensin II induces leukocyte-endothelial cell interactions in vivo via AT(1) and AT(2) receptor-mediated P-selectin upregulation. Circulation 102: 2118–2123PubMedCrossRefGoogle Scholar
  13. 13.
    Wolf G, Neilson EG (1993) Angiotensin II as a renal growth factor. J Am Soc Nephrol 3: 1531–1540PubMedGoogle Scholar
  14. 14.
    Linz W, Schölkens BA, Ganten D (1989) Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens A 11: 1325–1350PubMedCrossRefGoogle Scholar
  15. 15.
    Ward WF, Molteni A, Ts’ao CH (1989) Radiation-induced endothelial dysfunction and fibrosis in rat lung: modification by the angiotensin converting enzyme inhibitor CL242817. Radiat Res 117: 342–350PubMedCrossRefGoogle Scholar
  16. 16.
    Ferrario CM, Strawn WB (2006) Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol 98: 121–128PubMedCrossRefGoogle Scholar
  17. 17.
    Deshayes F, Nahmias C (2005) Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab 16: 293–299PubMedCrossRefGoogle Scholar
  18. 18.
    Studdy PR, Lapworth R, Bird R (1983) Angiotensin-converting enzyme and its clinical significance—a review. J Clin Pathol 36: 938–947PubMedCrossRefGoogle Scholar
  19. 19.
    Kuba K, Imai Y, Penninger JM (2006) Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol 6: 271–276PubMedCrossRefGoogle Scholar
  20. 20.
    Morrell NW, Morris KG, Stenmark KR (1995) Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Physiol 269: H1186–1194PubMedGoogle Scholar
  21. 21.
    Guo W, Shan B, Klingsberg RC, Qin X, Lasky JA (2009) Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol 297: L864–L870PubMedCrossRefGoogle Scholar
  22. 22.
    Wang R, Zagariya A, Ibarra-Sunga O et al (1999) Angiotensin II induces apoptosis in human and rat alveolar epithelial cells. Am J Physiol 276: L885–889PubMedGoogle Scholar
  23. 23.
    Idell S, Kueppers F, Lippmann M, Rosen H, Niederman M, Fein A (1987) Angiotensin converting enzyme in bronchoalveolar lavage in ARDS. Chest 91: 52–56PubMedCrossRefGoogle Scholar
  24. 24.
    Fourrier F, Chopin C, Wallaert B, Mazurier C, Mangalaboyi J, Durocher A (1985) Compared evolution of plasma fibronectin and angiotensin-converting enzyme levels in septic ARDS. Chest 87: 191–195PubMedCrossRefGoogle Scholar
  25. 25.
    Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/ deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86: 1343–1346PubMedCrossRefGoogle Scholar
  26. 26.
    Marshall RP, Webb S, Bellingan GJ, et al (2002) Angiotensin converting enzyme insertion/ deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med 166: 646–650PubMedCrossRefGoogle Scholar
  27. 27.
    Orfanos SE, Armaganidis A, Glynos C, et al (2000) Pulmonary capillary endotheliumbound angiotensin-converting enzyme activity in acute lung injury. Circulation 102: 2011–2018PubMedCrossRefGoogle Scholar
  28. 28.
    Maniatis NA, Kotanidou A, Catravas JD, Orfanos SE (2008) Endothelial pathomechanisms in acute lung injury. Vascul Pharmacol 49: 119–133PubMedCrossRefGoogle Scholar
  29. 29.
    Kuba K, Imai Y, Rao S, et al (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11: 875–879PubMedCrossRefGoogle Scholar
  30. 30.
    Imai Y, Kuba K, Rao S, et al (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436: 112–116PubMedCrossRefGoogle Scholar
  31. 31.
    Bardales RH, Xie SS, Schaefer RF, Hsu SM (1996) Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am J Pathol 149: 845–852PubMedGoogle Scholar
  32. 32.
    Martin TR, Nakamura M, Matute-Bello G (2003) The role of apoptosis in acute lung injury. Crit Care Med 31: S184–188PubMedCrossRefGoogle Scholar
  33. 33.
    Wang F, Xia ZF, Chen XL, Jia YT, Wang YJ, Ma B (2009) Angiotensin II type-1 receptor antagonist attenuates LPS-induced acute lung injury. Cytokine 48: 246–253PubMedCrossRefGoogle Scholar
  34. 34.
    Marshall RP, Gohlke P, Chambers RC, et al (2004) Angiotensin II and the fibroproliferative response to acute lung injury. Am J Physiol Lung Cell Mol Physiol 286: L156–164PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang H, Sun GY (2005) LPS induces permeability injury in lung microvascular endothelium via AT(1) receptor. Arch Biochem Biophys 441: 75–83PubMedCrossRefGoogle Scholar
  36. 36.
    Shen L, Mo H, Cai L, et al (2009) Losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factor kappa B and mitogen-activated protein kinases. Shock 31: 500–506PubMedCrossRefGoogle Scholar
  37. 37.
    Hamming I, Cooper ME, Haagmans BL, et al (2007) The emerging role of ACE2 in physiology and disease. J Pathol 212: 1–11PubMedCrossRefGoogle Scholar
  38. 38.
    Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensinconverting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383: 45–51PubMedCrossRefGoogle Scholar
  39. 39.
    Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203: 631–637PubMedCrossRefGoogle Scholar
  40. 40.
    Santos RA, Simoes e Silva AC, Maric C, et al (2003) Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100: 8258–8263PubMedCrossRefGoogle Scholar
  41. 41.
    Santos RA, Ferreira AJ, Simões E Silva AC (2008) Recent advances in the angiotensin-converting enzyme 2-angiotensin(1–7)-Mas axis. Exp Physiol 93: 519–527PubMedCrossRefGoogle Scholar
  42. 42.
    Deddish PA, Marcic B, Jackman HL, Wang HZ, Skidgel RA, Erdös EG (1998) N-domainspecific substrate and C-domain inhibitors of angiotensin-converting enzyme: angiotensin-( 1–7) and keto-ACE. Hypertension 31: 912–917PubMedCrossRefGoogle Scholar
  43. 43.
    Li P, Chappell MC, Ferrario CM, Brosnihan KB (1997) Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 29: 394–400PubMedCrossRefGoogle Scholar
  44. 44.
    da Silveira KD, Coelho FM, Vieira AT, et al (2010) Anti-inflammatory effects of the activation of the angiotensin-(1-7) receptor, MAS, in experimental models of arthritis. J Immunol 185: 5569–5576PubMedCrossRefGoogle Scholar
  45. 45.
    Uhal BD, Li X, Xue A, Gao X, Abdul-Hafez A (2011) Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1–7/Mas axis. Am J Physiol Lung Cell Mol Physiol 301: L269–274PubMedCrossRefGoogle Scholar
  46. 46.
    Hagiwara S, Iwasaka H, Matumoto S, Hidaka S, Noguchi T (2009) Effects of an angiotensin-converting enzyme inhibitor on the inflammatory response in in vivo and in vitro models. Crit Care Med 37: 626–633PubMedCrossRefGoogle Scholar
  47. 47.
    Bechara RI, Pelaez A, Palacio A, et al (2005) Angiotensin II mediates glutathione depletion, transforming growth factor-beta1 expression, and epithelial barrier dysfunction in the alcoholic rat lung. Am J Physiol Lung Cell Mol Physiol 289: L363–370PubMedCrossRefGoogle Scholar
  48. 48.
    He X, Han B, Mura M, et al (2007) Angiotensin-converting enzyme inhibitor captopril prevents oleic acid-induced severe acute lung injury in rats. Shock 28: 106–111PubMedCrossRefGoogle Scholar
  49. 49.
    Mortensen EM, Restrepo MI, Anzueto A, Pugh J (2005) The impact of prior outpatient ACE inhibitor use on 30-day mortality for patients hospitalized with community-acquired pneumonia. BMC Pulm Med 5: 12PubMedCrossRefGoogle Scholar
  50. 50.
    Treml B, Neu N, Kleinsasser A, et al (2010) Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit Care Med 38: 596–601PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V. Zambelli
  • A. Grassi
  • G. Bellani

There are no affiliations available

Personalised recommendations