Biomarkers of Acute Lung Injury

  • J. A. Lorente
  • N. Nin
  • A. Esteban
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM, volume 2012)


A biomarker is “any substance, structure or process that can be measured in the body or its products and influence or predict the incidence or outcome of disease” [1]. A biomarker can be useful for several purposes, including diagnosis, prognostication, identification of patients at risk, or prediction of response to therapy. In the case of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), a biomarker may help answer one or several of the following questions: How likely is this at risk patient to develop ALI/ARDS? Does this patient have hyperpermeability or cardiogenic pulmonary edema? What is the mortality of this patient with ALI/ARDS? How is this patient responding to therapy?


Acute Lung Injury Systemic Inflammatory Response Syndrome Acute Respiratory Distress Syndrome Respir Crit Diffuse Alveolar Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WHO Task Group on Environmental Health Criteria for Biomarkers in Risk Assessment: Validity and Validation (2001) International Programme on Chemical Safety. Biomarkers in risk assessment: validity and validation (EHC 222). Available at: Accessed October, 2011Google Scholar
  2. 2.
    Barnett N, Ware LB (2011) Biomarkers in acute lung injury — Marking forward progress. Crit Care Clin 27: 661–683PubMedCrossRefGoogle Scholar
  3. 3.
    Bernard GR, Artigas A, Brigham KL, et al (1994) Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee. Intensive Care Med 20: 225–232PubMedCrossRefGoogle Scholar
  4. 4.
    Katzenstein AL, Bloor CM, Leibow AA (1976) Diffuse alveolar damage—the role of oxygen, shock, and related factors. Am J Pathol 85: 209–228PubMedGoogle Scholar
  5. 5.
    Matute-Bello G, Downey G, Moore BB (2011) Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44: 725–738PubMedCrossRefGoogle Scholar
  6. 6.
    Parsons PE, Moss M, Vannice JL, et al (1997) Circulating IL-1ra and IL-10 levels are increased but do not predict the development of acute respiratory distress syndrome in at-risk patients. Am J Respir Crit Care Med 155: 1469–1473PubMedCrossRefGoogle Scholar
  7. 7.
    Bouros D, Alexandrakis MG, Antoniou KM, et al (2004) The clinical significance of serum and bronchoalveolar lavage inflammatory cytokines in patients at risk for Acute Respiratory Distress Syndrome. BMC Pulm Med 17: 4–6Google Scholar
  8. 8.
    Suter PM, Suter S, Girardin E, et al (1992) High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-1, interferon, and elastase, in patients with adult respiratory distress syndrome after trauma, shock, or sepsis. Am Rev Respir Dis 145: 1016–1022PubMedCrossRefGoogle Scholar
  9. 9.
    Parsons PE, Eisner MD, Thompson BT, et al (2005) Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med 33: 1–6PubMedCrossRefGoogle Scholar
  10. 10.
    Chen CY, Yang KY, Chen MY, et al (2009) Decoy receptor 3 levels in peripheral blood predict outcomes of acute respiratory distress syndrome. Am J Respir Crit Care Med 180: 751–760PubMedCrossRefGoogle Scholar
  11. 11.
    Villar J, Perez-Mendez L, Espinosa E, et al (2009) Serum lipopolysaccharide binding protein levels predict severity of lung injury and mortality in patients with severe sepsis. PLoS One 4: e6818PubMedCrossRefGoogle Scholar
  12. 12.
    Cohen MJ, Brohi K, Calfee CS, et al (2009) Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care 13: R174PubMedCrossRefGoogle Scholar
  13. 13.
    Prabhakaran P, Ware LB, White KE, et al (2003) Elevated levels of plasminogen acti-vator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am J Physiol Lung Cell Mol Physiol 285: L20–28PubMedGoogle Scholar
  14. 14.
    Ware LB, Matthay MA, Parsons PE, et al (2007) Pathogenetic and prognostic signifi-cance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med 35: 1821–1828PubMedCrossRefGoogle Scholar
  15. 15.
    Uchida T, Shirasawa M, Ware LB, et al (2006) Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med 173: 1008–1015PubMedCrossRefGoogle Scholar
  16. 16.
    Fremont RD, Koyama T, Calfee CS, et al (2010) Acute lung injury in patients with traumatic injuries: utility of a panel of biomarkers for diagnosis and pathogenesis. J Trauma 68: 1121–1127PubMedCrossRefGoogle Scholar
  17. 17.
    Calfee CS, Ware LB, Eisner MD, et al (2008) Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax 63: 1083–1089PubMedCrossRefGoogle Scholar
  18. 18.
    Greene KE, Wright JR, Steinberg KP, et al (1999) Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med 160: 1843–1850PubMedCrossRefGoogle Scholar
  19. 19.
    Greene KE, Ye S, Mason RJ, et al (1999) Serum surfactant protein-A levels predict development of ARDS in at-risk patients. Chest 116: 90S–91SPubMedCrossRefGoogle Scholar
  20. 20.
    Bersten AD, Hunt T, Nicholas TE, et al (2001) Elevated plasma surfactant protein-B predicts development of acute respiratory distress syndrome in patients with acute respiratory failure. Am J Respir Crit Care Med 164: 648–652PubMedCrossRefGoogle Scholar
  21. 21.
    Eisner MD, Parsons P, Matthay MA, et al (2003) Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 58: 983–988PubMedCrossRefGoogle Scholar
  22. 22.
    Determann RM, Millo JL, Waddy S, et al (2009) Plasma CC16 levels are associated with development of ALI/ARDS in patients with ventilator-associated pneumonia: a retrospective observational study. BMC Pulm Med 9: 49PubMedCrossRefGoogle Scholar
  23. 23.
    Kropski JA, Fremont RD, Calfee CS, et al (2009) Clara cell protein (CC16), a marker of lung epithelial injury, is decreased in plasma and pulmonary edema fluid from patients with acute lung injury. Chest 135: 1440–1447PubMedCrossRefGoogle Scholar
  24. 24.
    Katayama M, Ishizaka A, Sakamoto M, et al (2010) Laminin gamma2 fragments are increased in the circulation of patients with early phase acute lung injury. Intensive Care Med 36: 479–486PubMedCrossRefGoogle Scholar
  25. 25.
    Gallagher DC, Parikh SM, Balonov K, et al (2008) Circulating angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome. Shock 29: 656–661PubMedGoogle Scholar
  26. 26.
    van der Heijden M, van Nieuw Amerongen GP, Koolwijk P, et al (2008) Angiopoietin-2, permeability oedema, occurrence and severity of ALI/ARDS in septic and non-septic critically ill patients. Thorax 63: 903–909PubMedCrossRefGoogle Scholar
  27. 27.
    Rubin DB, Wiener-Kronish JP, Murray JF, et al (1990) Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J Clin Invest 86: 474–480PubMedCrossRefGoogle Scholar
  28. 28.
    Ware LB, Eisner MD, Thompson BT, et al (2004) Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury. Am J Respir Crit Care Med 170: 766–772PubMedCrossRefGoogle Scholar
  29. 29.
    Donnelly SC, Haslett C, Dransfield I, et al (1994) Role of selectins in development of adult respiratory distress syndrome. Lancet 344: 215–219PubMedCrossRefGoogle Scholar
  30. 30.
    Okajima K, Harada N, Sakurai G, et al (2006) Rapid assay for plasma soluble E-selectin predicts the development of acute respiratory distress syndrome in patients with systemic inflammatory response syndrome. Transl Res 148: 295–300PubMedCrossRefGoogle Scholar
  31. 31.
    Conner ER, Ware LB, Modin G, et al (1999) Elevated pulmonary edema fluid concentrations of soluble intercellular adhesion molecule-1 in patients with acute lung injury: biological and clinical significance. Chest 116: 83S–84SPubMedCrossRefGoogle Scholar
  32. 32.
    Calfee CS, Eisner MD, Parsons PE, et al (2009) Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Med 35: 248–257PubMedCrossRefGoogle Scholar
  33. 33.
    Ware LB, Fremont RD, Bastarache JA, et al (2010) Determining the aetiology of pulmonary oedema by the oedema fluid-to-plasma protein ratio. Eur Respir J 35: 331–337PubMedCrossRefGoogle Scholar
  34. 34.
    Pugin J, Verghese G, Widmer MC, et al (1999) The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med 27: 304–312PubMedCrossRefGoogle Scholar
  35. 35.
    Chesnutt AN, Matthay MA, Tibayan FA, et al (1997) Early detection of type III procollagen peptide in acute lung injury. Pathogenetic and prognostic significance. Am J Respir Crit Care Med 156: 840–845PubMedCrossRefGoogle Scholar
  36. 36.
    Ware LB, Koyama T, Billheimer DD, et al (2010) Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest 137: 288–296PubMedCrossRefGoogle Scholar
  37. 37.
    Calfee CS, Ware L, Glidden DV, et al. (2011) Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Crit Care Med 39: 711–717PubMedCrossRefGoogle Scholar
  38. 38.
    Gao L, Barnes KC (2009) Recent advances in genetic predisposition to clinical acute lung injury. Am J Physiol Lung Cell Mol Physiol 296: L713–725PubMedCrossRefGoogle Scholar
  39. 39.
    Lam E, dos Santos CC (2008) Advances in molecular acute lung injury/acute respiratory distress syndrome and ventilator-induced lung injury: the role of genomics, proteomics, bioinformatics and translational biology. Curr Opin Crit Care 14: 3–10PubMedCrossRefGoogle Scholar
  40. 40.
    Christie JD, Wurfel MM, Keefe GE, et al (2010) Genome wide association (gwa) iden-tifies functional susceptibility loci for trauma-induced acute lung injury. Am J Respir Crit Care Med 181: A1205 (abst)Google Scholar
  41. 41.
    Meyer NJ, Li M, Shah CV, et al (2010) Large scale genotyping in an African American trauma population identifies angiopoeitin-2 variants associated with ALI. Am J Respir Crit Care Med 179: A3879 (abst)Google Scholar
  42. 42.
    Meyer NJ, Li M, Feng R, et al (2011) ANGPT2 genetic variant is associated with traumaassociated acute lung injury and altered plasma angiopoietin-2 isoform ratio. Am J Respir Crit Care Med 183: 1344–1353PubMedCrossRefGoogle Scholar
  43. 43.
    Howrylak JA, Dolinay T, Lucht L, et al (2009) Discovery of the gene signature for acute lung injury in patients with sepsis. Physiol Genomics 37: 133–139PubMedCrossRefGoogle Scholar
  44. 44.
    Schnapp LM, Donohoe S, Chen J, et al (2006) Mining the acute respiratory distress syndrome proteome: identification of the insulin-like growth factor (IGF)/IGF-binding protein-3 pathway in acute lung injury. Am J Pathol 169: 86–95PubMedCrossRefGoogle Scholar
  45. 45.
    de Torre C, Ying SX, Munson PJ, et al (2006) Proteomic analysis of inflammatory biomarkers in bronchoalveolar lavage. Proteomics 6: 3949–3957PubMedCrossRefGoogle Scholar
  46. 46.
    Serkova NJ, Van Rheen Z, Tobias M, Pitzer JE, Wilkinson JE, Stringer KA (2008) Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 295: 152–161CrossRefGoogle Scholar
  47. 47.
    Stringer KA, Serkova NJ, Karnovsky A, Guire K, Paine R 3rd, Standiford TJ (2011) Metabolic consequences of sepsis-induced acute lung injury revealed by plasma “H-nuclear magnetic resonance quantitative metabolomics and computational analysis. Am J Physiol Lung Cell Mol Physiol 300: L4–L11PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. A. Lorente
  • N. Nin
  • A. Esteban

There are no affiliations available

Personalised recommendations